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Abstract—This paper proposes a network-aware resource
management scheme that improves the quality of experience
(QoE) for adaptive video streaming in CDNs and Information-
Centric Networks (ICN) in general, and Dynamic Adaptive
Streaming over HTTP (DASH) in particular. By utilizing the
DASH manifest, the network (by way of a logically centralized
controller) computes the available link resources and schedules
the chunk dissemination to edge caches ahead of the end-
user’s requests. Our approach is optimized for multi-rate DASH
videos. We implemented our resource management scheme, and
demonstrated that in the scenario when network conditions
evolve quickly, our approach can maintain smooth high quality
playback. We show on actual video server data and in our
own simulation environment that a significant reduction in peak
bandwidth of 20% can be achieved using our approach.

I. INTRODUCTION

The consumption of video streams exhibits strong daily pat-
terns, with a significant peak during ”prime time” hours. From
a network operator’s perspective, not only video streaming will
consume a lot of network resources, it will also require over-
provisioning the network for a peak usage that is much higher
than the average, resulting in a lot of unused capacity for most
of the time.

Video streams using Dynamic Adaptive Streaming over
HTTP (DASH) [30] or equivalent (Apple HLS, Adobe HDS,
etc) exhibit some relatively specific properties. (i) Video
streams are long lived, ranging from a few minutes for some
YouTube clips to over an hour for some Netflix movies; (ii)
Video streams are typically described in a manifest at the
onset of the connection, therefore it is possible to know the
semantics of the stream ahead of time; (iii) Video streams
are predictable in the sense that the sequence of packets
is predetermined by the video stream’s description and the
network conditions.

Many view a huge volume of traffic concentrated over a
relatively short period of the day as a problem. We hope
to demonstrate the properties of the video demands can be
leveraged to our advantage. We claim that it is possible to
time-shift a significant fraction of the traffic on the network
during prime-time by pre-fetching the video streams which
would be downloaded from the server during the peak hour
to a server at the edge of the network as soon as the stream

starts. The marginal cost for the network operator to pre-fetch
traffic is close to zero if it is using empty capacity. If pre-
fetching however adds traffic onto the network during period
of congestion, it makes things worse. Therefore, we propose to
monitor the network congestion, and to make the pre-fetching
of traffic conditional on the amount of traffic already in the
network.

For this approach to be feasible, the network layer needs
to be aware of the user’s consumption. Information-Centric
Networks (ICN)[12][6][14] allow two significant changes for
dynamic video streaming:
• It offers an opportunity to re-name content according to

logical semantics, so that one can identify the proper rate
and time segment from the naming structure. This allows
to infer the names of future segments without necessarily
having access to the manifest of the video stream.

• The file is explicitly requested using this name, letting
the network between a client and a server easily identify
that a series of packets belong to a video transfer.

These two changes lead to the following observation: in an
ICN, it is easier for the edge network to infer what a user is
streaming, and to derive what the user will request if he/she
keeps watching the video stream. The network has also a view
over the available resources, be it either available bandwidth
towards the client and the server, or available storage/cache
resource distributed within the network.

Combining the knowledge of the user’s demands with that
of the network resource, the network can therefore schedule
the requests for video streams in order to maximize its
incentive. One obvious first step for instance is for the network
to decide whether or not to prefetch a video stream that is not
currently cached within the network. The decision is based
on the current network conditions, the expected variations of
the traffic (based for instance on daily patterns), the available
cache space, etc.

One important difference from the ICN architecture when
compared with an overlay CDN, is that a network node has
access to both the network congestion information (which an
operator may be reluctant to share with an overlay) and to
the clients’ stream requests, using the ICN naming semantics.
Therefore, an ICN node can populate its cache with the clients’



demands using the network information. A video server in an
overlay CDN knows the user’s requests, but can only monitor
the link quality between different CDN nodes through probing
the paths (using a service like Conviva), and therefore can
place the content in a different CDN cache in a way which
impacts the network.

Another significant difference is the elasticity of the re-
sources in an ICN. A typical ICN architecture assumes that
many nodes in the network are able to cache content. There-
fore, if the network is lightly congested, and assuming the
video server can scale up with the demands, an ICN network
can harness multiple caches to pre-fetch a video stream fast,
and have a high speed up in the stream download, so that the
video stream does not impact future conditions beyond a short
horizon.

The contribution of this paper is to:
• study on data sets the potential gain of pre-fetching for

video streaming during peak congestion;
• present an architecture for pre-fetching for video streams

which combines network monitoring with ICN semantics
to populate a cache ahead of the need of the video client;

• implement our architecture in a test-bed, with legacy
video server and clients, demonstrating the feasibility of
having the network take an active role in the video stream
independently of the end points;

• and investigate the benefits of ICN cache video prefetch-
ing through experimental results.

We present our results in the context of ICN, but they could
be translated into a CDN scenario provided that the CDN
gateway has some interface to discover the network congestion
in between CDN repositories.

The organization of this paper is as follows. In section
II, we explain the benefits of prefetching using a motivating
example and consider actual data sets. In section III, we
briefly discuss the related work. In section IV, we introduce
the resource allocation method for cache prefetching. The
experiment results are carried out in section V. Finally, we
conclude in section VI.

II. MOTIVATION AND CHALLENGES

A. Prefetching Benefit

It is well known that video streaming has a lot of daily
variability with traffic increasing dramatically during prime
time hours. Prefetching allows to shift some of this traffic in
time so as to reduce the peak bandwidth. Therefore it has an
obvious applicability to the network operator.

Looking at data sets from YouTube observed at a European
CDN server [7] and from aDailyMotion server [3], which we
reproduce on Figure 1 and Figure 2 respectively, we see that
the load increases dramatically during peak hour.

If the load were to reach a long plateau, there would be
no benefit from prefetching. Shifting a video in time would
only increase the load during part of the plateau, increasing
the overall server peak. However, as seen from the figures, we
see that the load exhibit a very spiky burstiness, which opens
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Figure 1: Daily variation of the traffic for the YouTube service
at a European CDN server from [7].

up the door for smoothing the traffic and reducing the peak
value of the load.

We can also compute the theoretic gain from prefetching,
assuming a video stream length of 60 minutes (Netflix streams
account for 30% of the Internet traffic during prime time and
are long lived flows). This is plotted on both graph by the
line which flattens up during the peak hour. With prefetching,
the peak bandwidth usage saving at the busy hours (evening
3pm to 8pm) for both data sets is roughly in the 15% to 20%
range over the different days. This means that even during a
congested time, there is a significant gain from shifting traffic
in time.

This means the network operator can possibly save the oper-
ating costs incurred by the extra usage without prefetching, or
use the residual capacity to serve other types of traffic. From
a user’s point of view, the bandwidth can be used to improve
their viewing experience, that is, higher quality video can be
streamed with the available capacity.

We note that the popularity of the files is irrelevant to the
study here: popular files will be served locally from the cache,
and are not accounted in the load at the server. What we
consider is: if a file is requested from the server, can the
network shift the delivery of this file forward in time to a
local cache, so that if the server load increases later on, this
file will no longer impact the server.

B. Challenges

There are a few technical challenges to consider. First, there
must be a way to identify the video contents with different
rates so that the cache may prefetch higher rates in advance.
This implies that the network must be DASH-aware, and the
network, to some extent, must maintain the states of the current
viewing. Second, a resource allocation mechanism is needed,
to combine the capacity estimation and scheduling approaches,
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Figure 2: Daily variation of the traffic for the DailyMotion
service from [3].

to decide when and which segments to prefetch at any given
time. This links to the prediction of user behaviors.

Finally, the network’s prefetching must not add to the
congestion. There is little cost if un-used capacity is used to get
the file locally from the network operator nor the server point
of view. So there is little penalty for the network operator if
the viewer ends up not watching the pre-fetched file. However,
the network must never add to the traffic during the peak
congestion.

III. RELATED WORK

Information-Centric Network (ICN) architectures
[12][6][14] have been proposed recently to allow the
network to be aware of content semantics. We take full
advantage of the ICN content abstractions in this paper.

Dynamic Adaptive Streaming over HTTP (DASH) [30] is
a standard for video streaming that has been widely deployed
by many major video streaming services such as Netflix,
Hulu, and Youtube. In DASH, the video content is broken
into a sequence of small segments, each containing a short
playback time of the video. The DASH client first requests a
manifest (the MPD) describing the video and available quality
levels, and then adaptively requests the segment with proper
video quality based on the current network conditions reflected
during the streaming process.

DASH over ICN has been attracting some attention in the
IRTF [16] and [9] examines the interaction of DASH with
ICN. It observes potential issues, while we identify here
synergies. [17] targets HTTP adaptive streaming (HAS) in
Content-Centric Networking (CCN) [12] for Scalable Video
Coding.

[23] has looked at how to predict the requests from the users
by looking at their social interactions. Here, we use the natural
predictability offered by video streaming.

[1] describes a web prefetching module running on the CDN
main node (controller) which downloads web contents that will
be requested in the future to the LAN CDN surrogates. Our
work is different as the time domain is much smaller and
the prefetching utilizes the bandwidth more dynamically. In
addition, [1] does not specifically consider video contents.

[2] analyzes the potential benefits of CDN augmentation
strategies can offer for Internet video workloads using a dataset
of 30 million VOD and live sessions. It has also been observed
in [27][8] that fractions of viewers typically watch only the
first 10 minutes of video, around 4.5% of users are serial
early quitters, and 16.6% of users consistently watch video to
completion. This suggests that a user based prefetching policy
should be a natural extension for our work.

[19] proposes a Network-Friendly DASH (NF-DASH) ar-
chitecture for coordinating peer-assisted CDNs operated by
ISPs and the traditional CDNs. [20] analyzes the waiting time
and network utilization with service prioritization considering
both on-demand fetching/caching and prefetching in a P2P-
assisted video streaming system. [21] formulates the CDN as-
signment as an optimization problem targeting minimizing the
cost based on the QoE constraints to CDN servers at different
locations. [22] shows by measurement the shortcomings of
today’s video delivery infrastructure and proposes a control
plane in the network for video distribution for global resource
optimization.

Hybrid P2P-CDN video streaming enhancement has also
been considered. That is, serving content from dedicated CDN
servers using P2P technology.[11][10] and telco-CDN (CDNs
operated by telecommunication companies, enabling users to
reach CDN caches that are closer) federation are two emerging
strategies. Telco-CDN federation can reduce the provisioning
cost by 95%. Using P2P can lead up to 87.5% bandwidth
savings for the CDN during peak access hours.

Proxy-assisted caching and prefetching has been widely
studied in the literature. Some approaches consider the quality
of the connections [13] and the usage of the client buffers [24].
Approaches for transcoding proxy caching are also presented
in [18][28] in which the proxy caches different versions of
the content to handle the heterogeneous user requirements.
Prefix caching [29] caches only the frames at the beginning to
minimize the average initial delay. Exponential segmentation
[26] divides the video object such that the beginning of a video
is cached as smaller segment. Lazy segmentation approach [5]
determines the segment length according to the user access
record at the late time.

Prefetching is common for video content to reduce the pause
time during playback and service delay. [25] was the first to
apply prefetching of web delivery to reduce latency. In this
scheme, a server predicts the links that will be requested and
prefetches accordingly. The use of proxy prefetching in VoD
systems has been intensively studied.

[5] discusses a segment-based proxy pre-fetching for
streaming delivery. [15] evaluates the 1-ahead, n-ahead, and
priority-based segment prefetching. The results show that if
the bottleneck link is between client and proxy, all prefetching



schemes achieve high cache hit rate after 2-3 client requesting
a video. On the other hand, if the bottleneck link is between
proxy and server, no prefetching helps. Our approach considers
the link between the cache and the server and makes a pre-
fetching decision accordingly.

IV. DASH-AWARE VIDEO STREAM PREFETCHING

We propose a video prefetching approach that takes both
video session context and network condition context into
account.

In this paper, we use a (logically) centralized content
controller, as in [4], to locate content, manage the cache,
and monitor network congestion. The controller realizes the
management and policy at the content level in ICN. As in
[4], the URLs are used as data names. A controller is used
to assign content to caches on the path from the client to
server and to maintain the content state and location. In our
implementation built on top of TCP/IP in SectionV, a proxy
is built to maintain the TCP connection from the client so
as to provide late binding of the connection with the content
location and allow the client to dynamically switch between
the cache and the server. However, this late binding is native
to most ICN architectures. The proxy also interacts with the
controller to perform content routing.

The controller monitors the network conditions, and makes a
pre-fetching decision based upon the congestion in the network
and the requests from the users.

The basic idea of our approach is as follows. The network
controller collects statistics of current network capacity usage
and ongoing DASH video sessions. Based on the collected
information, the network controller assigns video segment
prefetching task to the edge caches. One or several caches can
be used to pre-fetch, depending on the network conditions and
the speed with which one cache can get the data.

The task assignment is performed for a given period of time,
which is defined as a round. Periodically, the controller uses
its knowledge collected from the previous rounds such as the
history of DASH video segment requests and the bandwidth
usage to decide the segments to be prefetched by caches in
the next round.

A. Protocol

The protocol message exchange is shown in Figure 3.
Following [4], a proxy is used to dispatch HTTP requests.
To dispatch the HTTP requests to cache or server, the proxy
queries the controller to know whether the content is cached
or prefetched. At this point, the controller, monitoring HTTP
DASH requests, collects and maintains the video segments
each client is requesting by simply parsing the query. The
requests are then forwarded by the proxy to the server or cache
as appropriate.

The controller monitors the current network bandwidth
and data rates as the data flows back to the client. In or-
der to retrieve video information, the controller may obtain
MPD information by explicitly requesting the MPD from the
server. Segment prefetching scheduling happens periodically.

To schedule prefetching tasks, the controller computes the
available capacity for prefetching (section IV-B) according to
collected network context and projected future requests and
compiles a list of segment identifiers to prefetch for caches
(section IV-C). The lists are then sent to the caches. Upon
receiving a segment identifier list, the cache initiates DASH
HTTP requests for each specified segment to the server and
fetch segments listed one by one. Whenever a segment is
received by cache, a notification is sent to the controller so
that the controller can maintain the sources of contents. Note
that caches may support lower video rates by transcoding the
retrieved segments to lower rate ones offline.

In short, the controller performs two tasks at the beginning
of each round: 1. Residual capacity estimation: estimate
capacity for the next round and decides how much spare
capacity can be used by prefetching. 2. Segment scheduling:
compile a list of video segments to prefetch based on the video
information, request history and the existing contents resided
in caches.

B. Residual capacity estimation

Suppose Ctotal is the current total capacity of the network,
and Bclient is the amount of capacity that is anticipated to be
consumed by DASH clients, and W is the length of a round,
the bandwidth available to prefetching at a cache, BA, can be
defined as follows.

BA = max(Ctotalδ −
Bclient

W
, 0) (1)

where δ is a pre-defined threshold preserved for traffic bursts.
To estimate the capacity consumed by DASH clients, con-

sider Bnew as the amount of bandwidth consumed by newly
arrived video sessions in the next round, and Bold as the
amount of bandwidth consumed by current video sessions in
the next round, Bclient can be represented as

Bclient = Bnew +Bold (2)

Assuming a Poisson arrival process of video streams, the
controller can formulate Bnew as a function of video initial
request arrival rate. However, the computation of Bold requires
knowledge about the DASH video and the cached contents, as
the controller needs to differentiate the segments that can be
retrieved from caches and the segments only available on the
original server.

The controller first needs to know which segments will be
retrieved by the client in the next round. We can formulate this
as a function of the last segment retrieved by a client and the
number of segments to be requested in the next round. The in-
formation of the requested segments can be easily maintained
by monitoring the DASH requests. However, predicting the
identifier of future segments requires some knowledge of the
available segments and the behavior of the streaming service
client. In this paper, we focus on Netflix-like video service,
which currently dominates the commercial video streaming
industry. Commercial video streaming service allows the video
player buffers only a fixed amount of data, in the unit of
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Figure 3: Message exchanges with prefetching

seconds or minutes, at any given time. The subsequent seg-
ments are only requested when equivalent playback has been
consumed. In this case, we can reasonably expect a uniform
DASH requests arrival for each client once its playback buffer
becomes full. Before that, a client keeps requesting the next
segments to fill up the buffer. More formally speaking, the
number of segments to be requested by the client in the next
round can be described by

Nreq = sm − sb +
W

st
(3)

where sm is the maximum buffer size in the unit of seconds,
sb is the current buffer size of the client, and st is the
playback time of a segment in seconds. With the knowledge
of last requested segment, the controller examines the next
Nreq segments and determines how many of them are already
cached. If these segments are not cached yet at the time of

scheduling starts, we assume the segment will be requested
from the server and adds the amount of bandwidth needed for
this segment to the anticipated network load Ni for a client i.
Bold can be estimated as

Bold = Σ
i
Nisv,i (4)

where sv, i is the size of video segments in bytes. Note
that we calculate Bold in a conservative way. That is, we
assumes clients will request the highest quality segment and
the segment size sv, i is approximated accordingly. This can be
easily extended to a finer sv, i approximation on the controller
side with knowledge of rate adaptation mechanism used by
clients.



C. Segment prefetching scheduling

Once we have the residual capacity available for the cache,
the controller needs to decide which segments to prefetch.
We first explain the principle of our scheduling algorithm
by an example with a single client. For simplicity, we first
assume the cache-server path is able to sustain the highest
video rate. Suppose each segment represents one second of
the video and the client’s last request was for segment 2, and
our round length is 5 seconds. Therefore, we expect the client
will retrieve segment 3 to segment 7 in the next round. Now let
us first assume the cache does not have segment 3 to segment
7, and therefore the client will request the segments directly
from the server. In this case, in order to prevent bandwidth
waste (i.e. the cache prefetches the same segment as the client
does), the cache must prefetch segments after segment 7, that
is, starting from segment 8. In this simple case, the controller
can calculate the expected number of segments to prefetch
simply by

Np = BAW (5)

That is, the cache will prefetch segment 8 to 8+Np. If we
assume segment 3 to 15 have been prefetched by the cache, in
this case, the client will obtain these segments from the cache
in the next round, and the cache should prefetch segment 16
to 16+Np. Only the segments that have not been cached or
played are scheduled.

Next, let us generalize the scenario to support multiple video
rates and various network condition. Consider a case when the
cache-server path cannot always sustain the highest video rate,
say the highest video rate is 1Mbps but the residual bandwidth
available for prefetching is only 700kbps. We have a question
that whether we should still fetch the highest quality segment.
In the case with a single client, suppose the earliest playback
time among all segments awaiting prefetching is T , the data
rate is R, the approximate segment size at rate r is sr, the
time the prefetching of segment i starts is ti we can prefetch
higher quality segments as long as the following holds:

T >
R

sr
+ ti (6)

In other words, the controller selects the video rate r by

argmax
r

R

sr
+ ti − T (7)

Note that in this case the controller may schedule less than
Np segment as it can only schedule the segments who satisfies
ti < T

Now consider the case where the cache prefetches for mul-
tiple clients watching different videos. By the same principle,
the controller can decide for each client which segment to start
from. The solution we are looking for is a way to prioritize
the segments, and then we can take at most first Np segment
accordingly. For simplicity, we overlook the fairness between
clients and simply order the segments by their estimated
playback time, that is, the time the particular video segment
will be needed. This time is estimated at the controller using
the recorded requested time of the first segment request from a

Figure 4: Testing scenario

client, the duration of segments, and the order of the segment
in the video. The duration and order of segments are available
in the metadata carried by the mpd of DASH videos. If the
residual capacity can sustain highest quality among all videos,
the controller then selects the Np segments with the earliest
estimated playback time in the list to prefetch. In case when
the residual capacity does not necessarily sustain all rates,
equation 7 is used to decide which rate should be requested.
Note that prefetching higher quality segment for one client
does not affect the normal playback of other clients as we limit
the end time of each prefetching to before T by equation 7.
In addition, the capacity needed to sustain normal playback of
all clients during the next round has been included in equation
4.

V. EXPERIMENTS

A. Testbed and Settings

Our testing scenario consists of six nodes: a video server,
a cache, a proxy, and three clients. The system is imple-
mented using Open vSwitch and VirtualBox on top of two
workstations as represented in Figure 4. Each node of the
scenario runs on its own virtual machine. The algorithm logic
is implemented extending the Floodlight Java based OpenFlow
controller.

In our scenario, the server contains three different sample
videos of the same length, and with the same video rates
available: 200Kbps, 250Kbps, 300Kbps, and 400Kbps. The
testing video is trimmed from the DASH data set and is 200
seconds long. Each segment’s duration is 2 seconds. Finally
the video is played at the client by a modified VLC player. In
order to observe the behavior of Netflix-like video services,
we modified the latest VLC player’s DASH plug-in with two
additional features:

1) Limited download buffer: the client downloads and
keeps only the video segments for the following t
seconds of playback at any given time. We set t = 20
in our experiment.



2) Video quality adaptation: the client adapts video qual-
ity by a moving average of the data rate estimates
of the previous k segments. This allows the video
quality adaptation to be more responsive, but also avoids
unnecessary quality fluctuation. In the experiment, we
use the value k = 5.

To emulate the behavior of resource competition between
multiple clients, the server link rate has been reduced to 900
kbps, which provides enough bandwidth to serve only two
flows at the maximum bitrate available.

B. Results

We experiment using the previously described settings and
compare the results with and without our prefetching approach.
In particular we analyze two scenarios: in the first one we
look at how a quick transition from a lightly loaded network
to a congested network influences the perceived video quality
for the user; in our setup, this corresponds to starting a first
client at time 0 and the other two clients half way through
the reproduction of the video for the initial client (after 100
seconds). In the second scenario, we look at how the network
reacts to an increasing load over time by starting the three
clients progressively at times 0 seconds, 70 seconds and finally
140 seconds. To evaluate the perceived quality we look at
the decisions taken by VLC’s DASH plugin. The adaptation
logic used inside the DASH module selects the bitrate to fetch
depending on two factors: estimated throughput and video
reproduction needs. Hence, the bitrate selected reflects the
perceived quality by the end user.

Figures 5a and 5d show the time traces of the first scenario
with and without prefetching. From this trace we can see how
the cache exploits the unused capacity available during the
first part of the experiment to prefetch the entire video that
the first client is retrieving. By doing so, the server link never
reaches a congested status and this allows the second and third
clients to have enough bandwidth available to provide the best
video quality to the users. When prefetching is not enabled,
the arrival of the two new clients corresponds to a drastic
reduction in the bitrates of the segments fetched. We notice
that this is further influenced by the behavior of DASH clients
that retrieve only a time limited buffer window. This window
is not big enough to compensate for the fluctuation in available
bandwidth and causes the player of the first client to reduce
the video quality displayed. In a similar manner, 5b and 5e
show the same analysis for the second scenario. While the
contention period, when all three clients are reproducing the
content, is shorter, it is still evident how prefetching benefits
maintaining a higher quality reproduction. Moreover, in this
scenario, both the first two clients can leverage the presence
of the cache in the network.

To get a closer look at the distribution of the choices taken
by the adaptive logic, we present the CDFs of the segment
bitrates in Figures 5c and 5f. As we can see, more than 20%
of the chunks for the first scenario and more than 10% for
the second scenario are fetched at a reduced quality if the
prefetching algorithm is not enabled in contrast with the close

Figure 6: Simulation Scenario

to 0% results obtained with prefetching. This results are even
more encouraging considering the fact that they include also
the portions of time where only one or two clients are actively
fetching data and then the provided bandwidth is enough to
retrieve the best video quality possible.

C. Simulation

We also conducted a simulation to investigate the perfor-
mance of the proposed scheme in larger network using the
ns3 simulator. The simulation scenario consists of 1 video
server and 16 clients, each downloads a different video, from 4
subdomains, as shown in Figure 6. There are 4 clients in each
subdomain. Each subdomain has a cache that may prefetch
video segments for its 4 clients. All links have data rate
5Mbps. To simulate the prime time traffic, we divide all clients
to two groups: prim-time clients and non-prime-time clients.
We define 400-800 seconds as prime-time, at 400 seconds, 3
clients from each subdomain starts their video downloading
within 10 seconds. The non-prime-time clients start before
prime-time period with inter-arrival interval 10 seconds. The
entire simulation lasts for 1000 seconds. All other settings such
as application and video rate configurations are the same as in
the testbed experiments. The Netflix player-like client behavior
including video rate adaptation based on exponential average
of session data rate and HTTP protocol are implemented.

We focus on the time-shifting server load in this experiment.
The result is shown in Figure 7. The server load is defined as
the traffic sent by the server. With prefetching, the server load
is shifted ahead of time and is more ”flat” at prime time. The
peak traffic is lighter when rush time users come in. The peak
server load is 3300kbps without prefetching, and is reduced
to 2650kbps with prefetching. This reduction in peak demand
of 20% is similar to the values depicted on Figure 1 and 2.
Note that in this experiment the bottleneck link between the
server and the core router is not congested, and thus all users
are able to stream highest quality video.

VI. CONCLUSIONS

We propose a DASH-aware scheduling algorithm for edge
cache prefetching in ICN. Our algorithm utilizes the knowl-
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(a) Scenario 1 with pre-fetching
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(b) Scenario 2 with pre-fetching
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(d) Scenario 1 without pre-fetching
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(e) Scenario 2 without pre-fetching
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Figure 5: Experimental results

Figure 7: Simulation results: server load

edge of the video segments obtained by DASH MPDs, and
schedules the segment prefetching according to the current
network condition and the context of video playback including
the video rates and client request history. The results show
that this method improves the quality of experience on client
side by utilizing the residual bandwidth and requesting video
segments in advance.
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