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Abstract—The introduction of Dynamic Adaptive Streaming
over HTTP (DASH) helped reduce the consumption of resources
in video delivery, but its client-based rate adaptation is unable
to optimally use the available end-to-end network bandwidth.
We consider the problem of optimizing the delivery of video
content to mobile clients while meeting the constraints imposed
by the available network resources. Observing the bandwidth
available in the network’s two main components, core network,
transferring the video from the servers to edge nodes close to the
client, and the edge network, which is in charge of transferring
the content to the user via wireless links, we aim to find an
optimal solution by exploiting the predictability of future user
requests of sequential video segments, as well as the knowledge of
available infrastructural resources at the core and edge wireless
networks in a given future time window. Instead of regarding the
bottleneck of the end-to-end connection as our throughput, we
distribute the traffic load over time and use intermediate nodes
between the server and the client for buffering video content to
achieve higher throughput, and ultimately significantly improve
the Quality of Experience for the end user in comparison with
current solutions.

I. INTRODUCTION

Video consumption has grown so fast that the core network
is now congested and has become the bottleneck during peak
hours. Recently, [1] shows that video rates from a large CDN
decrease during prime time owing to the congestion in the
network. The share of video streaming is expected to increase
to 79% by 2018 [2], further exacerbating the issue. Inter-
net Service Providers are struggling to provide high quality
services to their customers due to their inability to allocate
enough capacity to meet such demand, especially at peak
hours. While in the past, core network was over-provisioned
when compared with the wireless edge, the trend is for both
wired and wireless to align owing to the growth in bandwidth
demand, the increased capacity of wireless technologies, and
the economical incentive for operators to not build over-
capacity inside their core networks under tremendous band-
width pressure.

To adjust the demand to the network conditions, Dynamic
Adaptive Streaming over HTTP (DASH) has been introduced.
DASH lets the client adjust the rate of the video stream by
monitoring the network conditions perceived by this stream.
DASH is a client-based rate adaptation, as the server is
stateless and the network is considered as a black box. The

client measures the end-to-end throughput between itself and
the server and modifies the rate accordingly.

While this approach has been incredibly successful and
DASH-like rate adaptation now accounts for most of the video
traffic (say, Netflix or YouTube), end-to-end rate adaptation
is suboptimal. Indeed, end-to-end monitoring measures the
lowest throughput of all the links in between the client and
the server, while the available bandwidth on these links varies
a lot.

As a simple illustrative example, consider the following
scenario of Figure 1: the client is connected to the server by
two links (say, a wireless link for the edge network, and a
wired link to the server). Both of the links’ bandwidth will
oscillate and in modern networks, both are congested [1].
Therefore an end-to-end mechanism will yield the minimal
available bandwidth of each link. If for one unit of time,
the capacity of the wireless is 1 unit of transfer, while the
capacity of the wired link is 2, and for the next unit of time
the capacities are reversed, then the end-to-end mechanism can
only achieve a rate of 1.

However, inserting an intermediary node with storage ca-
pacity in between the two links could increase the throughput
significantly. In the illustrative example, during the first time
slot, the full capacity of the wired link could be used to deliver
1 unit to the client and 1 unit to the intermediate storage; in the
second time slot, this extra stored unit can be delivered over
the air interface, for a total delivery of 2 units. On average,
the delivery is of 1.5 for each time slot, versus 1 in the end-
to-end mechanism. While this example is simplistic, and does
not take into account rate adaptation, it shows the benefit of a
network-assisted content delivery mechanism. Here we present
an intermediated rate adaptation mechanism which leverages
the different time-varying capacities of the multiple links in
the network.

The goal of our work is to propose a novel infrastructural
approach to control the load on the network for clients with
quickly changing available capacity while maintaining high
quality experience for the end users. The experience is defined
as a set of quality metrics, such as average bitrate, temporal
variability and amount of rebuffering time. Our solution is
based on two key ideas: (1) to use local caches strategically
deployed into the access networks to decouple the transmission
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Fig. 1: Basic network representation.

speed of the Internet long distance network from the local
access network; and (2) to exploit the predictability of fu-
ture available infrastructural resources (at the core and edge
wireless network) and the predictability of video requests to
distribute the load on the network of the video streams and
control the Quality of Experience for the end users.

The rest of the paper is structured as follows: in Section
IT we will discuss our contributions in comparison to other
related works; in Section III we will present the network
model that we use to then design our solution; Section IV will
provide a detailed experimental analysis of our design through
extensive simulations and finally Section V will conclude the

paper.
II. RELATED WORK

Bianchi [3] has considered the role of intermediate storage
in content delivery, however in the context of ATM and
without rate adaptation. They did observe a similar benefit in
their application scenario. Since that work, Dynamic Adaptive
Streaming over HTTP (DASH) [4] has been introduced and
successfully deployed as a standard for video streaming.

Proxy-assisted caching and prefetching has been widely
studied in the literature. Some approaches consider the quality
of the connections [5] and the usage of the client buffers [6].
Approaches for transcoding proxy caching are also presented
in [7], [8] in which the proxy caches different versions of
the content to handle the heterogeneous user requirements.
Prefix caching [9] caches only the frames at the beginning to
minimize the average initial delay. Exponential segmentation
[10] divides the video object such that the beginning of a
video is cached as a smaller segment. The lazy segmentation
approach [11] determines the segment length according to the
user access record at the late time. [11] discusses a segment-
based proxy pre-fetching for streaming delivery. [12] evaluates
the 1-ahead, n-ahead, and priority-based segment prefetching.
The results show that if the bottleneck link is between client
and proxy, all prefetching schemes achieve high cache hit rate
after 2-3 clients requesting a video. On the other hand, if the
bottleneck link is between proxy and server, no prefetching
helps. Our approach considers the link between the cache and
the server and makes a pre-fetching decision accordingly.

Proxy technologies have also been used to enhance QoE.
[13] uses information about wireless channel quality at the
base station to provide QoE and fairness among clients. [14]
proposes WiDASH, a proxy for adaptive HTTP streaming
over wireless networks that implements a quadratic linear
optimization problem to decide on the rate to use for each
user/segment while giving higher priority to lower video rates.

Alternatives to intermediate storage and proxies have also
been considered in order to improve DASH, or video streaming
in general. [15] proposes a Network-Friendly DASH (NF-
DASH) architecture for coordinating peer-assisted CDNs op-
erated by ISPs and the traditional CDNs. [16] considers the
interaction of DASH and caching. [17] analyzes the waiting
time and network utilization with service prioritization con-
sidering both on-demand fetching/caching and prefetching in a
P2P-assisted video streaming system. [18] formulates the CDN
assignment as an optimization problem targeting minimizing
the cost based on the QoE constraints to CDN servers at dif-
ferent locations. [19] shows by measurement the shortcomings
of today’s video delivery infrastructure and proposes a control
plane in the network for video distribution for global resource
optimization. Hybrid P2P-CDN video streaming enhancements
have also been considered [20], [21] (serving content from
dedicated CDN servers using P2P technology) as have im-
provements through telco-CDN federation (CDNs operated by
telecommunication companies, enabling users to reach CDN
caches that are closer). Telco-CDN federation can reduce the
provisioning cost by 95%. Using P2P can lead up to 87.5%
bandwidth savings for the CDN during peak access hours.

Prediction of content requests or available resources has
been looked from different perspectives in the literature. [22]
has looked at how to predict the request from the users
by looking at social interactions. Here, we use the natural
predictability that video streaming offers. [23] describes a web
prefetching module running on the CDN main node (con-
troller) which downloads web content that will be requested in
the future to the LAN CDN surrogates. Our work is different as
the time domain is much smaller and the prefetching utilizes
the bandwidth more dynamically. In addition, [23] does not
specifically consider video content. [24] tries to optimize the
utilization of the wireless channel to delivery buffered video
(i.e. streaming with availability of buffer at the receiving side)
jointly with the minimization of the rebuffering time using a
bandwidth prediction model, but does not consider network
caching or adaptive video streaming.

In conclusion, to the best of our knowledge, our paper is
the first work to exploit the predictability of future available
infrastructural resources (both at the core and edge wireless
network) and the predictability of video requests to distribute
the load on the network of the video streams and control the
Quality of Experience for end users.

III. NETWORK MODEL AND ARCHITECTURE

A. Overview

We build our system around the network model shown in
Figure 2 from [3] (and similar to [25], [26], [27]): in this
classical scenario, a client connects to the Internet through
a local access network; the goal of the client is to retrieve
video content from a remote server that can be reached by
traversing a long distance network. We focus on a scenario
where mobile devices are connected to the access network
through a wireless interface (or more than one); our system
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Fig. 2: System model.

is designed to be technology agnostic so both wifi or cellular
connectivity can be considered.

We base our video delivery model around Dynamic Adap-
tive Streaming over HTTP (DASH). In this protocol each video
file is divided into segments of equal duration encoded at
different bitrates and all stored in one or more web servers. The
choice of using DASH as the underlying technology for our
system naturally derives from its popularity as it relies on the
already available HTTP infrastructure of web servers, proxies
and caches. In a typical DASH system, a client interested in
retrieving the video first has to retrieve a Media Presentation
Description file that contains information on the structure of
the video, the available different bitrates for the segments and
at which location they are stored, from the server. Once this
step is completed, the client proceeds to sequentially download
consecutive video segments. When a new segment has to be
retrieved, the client selects an appropriate bitrate where the
decision is usually based on different factors such as recently
experienced bandwidth [28] or current buffer size [29].

This model heavily relies on the ability of the client to esti-
mate the available bandwidth and general network resources,
a task arguably very difficult under normal network conditions
[30], and even more complex under wireless and mobile envi-
ronments due to the high dynamicity caused by time-varying
fading, shadowing interference and hand-off delays [31], [32].
For this reason, we propose to move the adaptation logic where
this information is more easily accessible: into the network. In
our system, a caching system is positioned at the edge of the
architecture!. An orchestration system, that from now on we
will call the network controller and that could be centralized
or distributed implements the adaptation logic by means of
periodically scheduling video segment requests to temporarily
store the corresponding video segments into the cache; to do
so, we assume that the controller, at the beginning of a periodic
time window of given size, schedules the download of video
segments to the available caches where the clients will then
retrieve them from. The scheduling process is based on two
fundamental pieces of information to which the controller has
access:

A general view of the network infrastructure resources avail-
ability both in the core network and the edge network: as
different studies have proved, it is indeed possible to predict

IThe cache should be within the wireless operator’s network, but not
necessarily co-located with the base station, to allow for easy cell level
mobility.

the variability of users connectivity in wireless networks to
a certain extent by either exploiting movement predictability
[33] or by recognizing performance patterns [34], which is
even easier if done from a convenient location inside the access
network?.

Information on the client playback and buffer status: assum-
ing that the normal DASH client behavior is expected (i.e.
sequential downloading of consecutive video segments), the
controller maintains a detailed view of the current status
of active video streams by tracking the progression of the
requested segments; this includes the size of the video buffers
available at each client and the playback time.

We now analyze the details of each protocol and algorithm
implemented in our system; we start from describing how the
basic DASH model would be modified in order to exploit the
new functionalities in Section III-B; we then provide details on
the optimization functions involved in the scheduling process
in Section III-C and finally, Section III-D introduces the
scheduling algorithm performed by the controller.

B. System Protocols

Our solution’s goal is to maximize the Quality of Experience
(QoE) for the end users while only exploiting the available
resources. We use the concept of a controller that orchestrates
the necessary operations; while we present it as a centralized
solution, we claim that the same results could be obtained with
a distributed solution, such as a web proxy, as our algorithm
would work in either setting. Moreover, while we refer to
this orchestration system as the controller, we do not limit
our solution to Software Defined Networks: any technology
able to track HTTP requests can be applied; possible solutions
include the use of an HTTP proxy that manipulates the traffic
or obviously the use of a centralized SDN controller. Our
system relies only on tracking and exploiting available in-
network resources (i.e. capacity and caches) and tracking and
eventually modifying HTTP requests from the clients. We then
abstract the required actions into three main steps.

1) Stream initialization. In order to initialize the streaming
process, each client has to request the DASH MPD file from
the server. The controller captures these requests and retrieves
the same information either by deep packet inspection of
the returned content or by requesting the same file from
the webserver. With this information, the controller obtains a
complete view of the video that can potentially be retrieved. To
simplify the description and our notation, we assume that each
video is composed of N segments s¥ = {s1, s2, ..., sy }, each
of duration S seconds and available at M different bitrates.

2) Bitrate Adaptation. Once the MPD file is retrieved, the
client can proceed to sequentially request the video segments;
while in a normal DASH setup, the client would be in charge
of selecting one of the available bitrates for each requested
segment, we leave this duty to the edge controller; this design

2As a matter of fact, our algorithm enhances predictability in the network,
as it attempts to keep the rate constant, as we will see in the QoE discussion
and in the evaluation results.



choice is justifiable by considering the fact that the controller
has the best possible view of the available resources, by
accessing infrastructure components and tracking the client
process through its issued requests. The controller selects
among the different bitrates based on two main factors: status
of the video reproduction at the client (i.e. buffer size and
previous quality selection) and future availability of infras-
tructure resources; in particular we assume that the controller
has access to information regarding residual capacity available
in the network and bandwidth for any specific client for a time
window of size T' seconds.

3) Streaming process. Following the normal DASH model,
clients sequentially retrieve video segments by mean of issuing
HTTP requests. We differentiate from the original model by
having the clients retrieve the video from the caching system
without the need for specifying any particular version of
the segment. This could be done using commonly exploited
techniques such as: 1) having the network controller modify
the originally retrieved MPD by replacing content URLs with
locally resolvable ones or 2) by transparently capturing the
HTTP requests (e.g. if the controller is implemented as an
HTTP proxy) or 3) in order to meet the proposed goals the
controller divides the delivery path into two components: from
the server to the local caches available at the edge network
and from the caches to the client over the wireless link. The
controller uses the available information in the time slot of
size T" seconds to provide in time delivery to the caches.
Additional details regarding the involved scheduling algo-
rithm will be provided in section III-D, but in order to do so,
we first need to explain the Quality of Experience employed.

C. Optimization Function

1) QoE Model: We do not re-invent the wheel for QoE and
use a typical QoE model that takes into account average rate,
rate variations and buffering events. We present the model here
only to describe how it is computed in the algorithm.

Average quality: multiple works have shown how the average
video quality can not be used as the sole metric in determining
the quality experienced by a user. Nevertheless, we still need
to have a way of factoring the proportional quality between
different available bitrates; for this reason we refer to previous
work [35] where it has been widely proven that there is a direct
relationship between bitrate selection and quality governed by
logarithmic laws.

Temporal quality variance: different studies have proven
how representation switching can factor negatively against the
quality of experience; in particular, [35] found that only up
to 0.5 quality switches per minute are considered tolerable by
users, causing exponential increase of rate of abandonments
if these criteria are not met. Moreover, as suggested in the
ITU standard [36], human memory effects can distort quality
ratings if noticeable impairments occur in approximately the
last 10-15s of the sequence, exponentially decaying afterwards,
causing past factors to relatively influence the current visual-
ized video.

Buffering time and ratio: it has been widely demonstrated
that frequency and length of video rebuffering highly affects
the perceived quality of a video stream where each event
increases the rate of abandonment and reduces the probability
of client return [35].

While the third factor negatively impacts the abandonment
rates from users, we will work with the initial assumption
that these events are occurring very infrequently; namely
we assume the available bandwidth always provides enough
resources to deliver at least the lowest quality of video; a
rebuffering cost could then be introduced into our optimization
function to factor it into the scheduling algorithm.

We initially focus our attention on the first two points in
defining a model of the quality of experience perceived by a
client over a video session. First we express the quality of a
video segment following the logarithmic law:

pri

r

q(ri,r) = aln

where 7 is the minimum quality available for the segment,
r; is the quality of the considered segment and « and f3
are specific factors that vary depending on the type of the
displayed content.

Taking the second factor into consideration, we define a
temporal quality variance penalty for two following video
segments selected at qualities ¢;—1(r;,7) and ¢;(r;,r) as:

v — (@ — gi-1),
—(gi — ¢i-1)

if ¢ > qi—1
if ¢; < gqi—1

where 1 and v are positive factors that determine how much
changes impact the overall experience when a transition to a
higher or to a lower quality representation happens.

Therefore we can calculate the QoE as the objective function
capturing the defined values, where for a sequence of N
segments selected at qualities giY:

N

ola) = (ar —vi)

k=1

where v, = v(qF_,,)-

2) Cost Factors Considerations: We can include other
metrics in our model to account for the network incentives;
for instance, a network operator may have a peering agreement
such that it incurs a cost linear with the amount of bandwidth.
Therefore we can introduce a cost ¢, = pr; with p as a price
per unit of data transfer; also, there may be a cost associated
with the storage of data at the edge cache. Namely, if w;(t)
is the amount of data in transit from the servers to the clients
which is stored in the edge cache at time ¢, we can introduce
a storage cost ¢; = Ky, ws(t).

We can then subtract these costs from the utility to get a
joint objective which takes into account the QoE of the end-
user (or the benefit to the end-user as a potential revenue to
the operator) minus the costs associated with the system.
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Fig. 3: Example on how future knowledge can be used to
exploit residual capacity. (a) Provides the general scenario and
(b) its representation through cumulative downloaded data.

D. Rate and Streaming Algorithms

As discussed at the beginning of this section, we consider
four main blocks as shown in Figure 2: a web server, that
has complete availability of all the segments composing the
video; a long distance network, an access network that uses
a caching system in order to support the streaming process;
finally, a mobile client attached to the network through a
wireless interface®. Resources available on the two logical
hops between the server and the client are regulated by the
capacity function ¢(t) in the core, and the capacity function
e(t) at the edge. ¢(.) and e(.) are time varying instantaneous
capacities. They are assumed to be varying with a coherence
time such that knowledge of ¢(.) (resp. e(.)) until time ¢ allows
the controller to estimate ¢(s) (resp. e(s)) for the time window
s € (t,t + W), for some time W.

Let us first introduce a supporting example to build intuition
behind the presented model. In contrast to current solutions
where the logic employed to perform the bitrate adaptation
process is based on estimation of available resources perceived
in the recent past, we consider a partially anticipative case
in which a finite window of future edge and core network
capacity variations are known beforehand. This information
is used by the network controller to schedule which video
segments to download in the upcoming future, by either
transferring the content directly the server to the client, or
by using the available caches as support.

Consider the simple scenario represented in Figure 3a,
where W = 4s and ¢(t) is constant at 300 kbps and e(t) varies
from the first 2 seconds period at 100 kbps to the second period
at 500 kbps. In this context the client wants to retrieve a video
divided in segments of size 2 seconds and available at three
different representations: 100 kbps, 300 kbps and 600 kbps.
Initially the video buffer is empty, so let us assume that the
first segment of video will be downloaded at minimum quality
to reduce the startup wait time for the client. This corresponds
to downloading 200 kbits of data which in our example, given
the initial bottleneck of the wireless link will take 2 seconds to

3While more than one access interface could be considered, we first focus
our analysis on a single access interface.

TABLE I: Summary of symbols

complete. Once this happens, the video client has 2 seconds of
video available for display and it should try to download the
next segment by this amount of time otherwise a rebuffering
event would occur (i.e. the video client remains stuck waiting
for more video data to be available).

We denote by ¢4 the download deadline, that is the amount
of time until the buffer runs out and the next segment needs
to be fully downloaded for display. ¢4 in our example will
then occur at the time of 4 seconds. In current scenarios,
where downloads are controlled by the client, only two repre-
sentations would meet the deadline: 100 kbps (which would
allow for more segments to be downloaded) and 300 kbps.
In our anticipative case, we know that even though the first
download will be bandwidth limited by the current bottleneck,
we are actually under-utilizing the network resources as 200
kbps of unused capacity have not been exploited during the
first segment download. As we are scheduling downloads
in advance, when evaluating the amount of time needed to
download next segment we consider the unused capacity as
data that might actually have been downloaded to the local
caches. The actual amount of data that could have been
downloaded to a location in the network (i.e. the caches) is
easily calculated using the cumulative versions of e(t) and
c(t), that we will call E(t) and C(t), as:

UC(t) = C(t) — E(t)

In our particular case, UC'(¢) is highlighted in black in Figure
3b and corresponds to 400 kbits. Now we can assume that
this amount of data could have already been transferred close
to the edge network preventing the core network from being
the bottleneck in the second period. This difference can again
be noticed in Figure 3b: given that the amount of downloaded
data always corresponds to the minimum of the two functions
E(t) and C(t) (as a client can never download more than what
is allowed by the bottleneck in the network), at the time of
2 seconds this would correspond to 200 kbits. Assuming no
preemptive caching is applied, the amount of data that could
be downloaded in the second period is again delimited by the
minimum of the two lines and in this case it would correspond
to the plain line representing C'(¢). If we assume that the core
network has moved an amount of data corresponding to the
unused capacity to the caches, the minimum has now to be
taken between F(t) and the dotted version of C(t).



Our algorithm applies these concepts of deadlines and
evaluations of unused capacity to explore the state space of
valid combinations of segment bitrate downloads to select the
one in the time window that produces the highest QoE utility
value described in Section III-C with rebuffering events never
occurring (hence always meeting the set deadlines).

Bitrate Selection Algorithm. We now formalize the provided
concepts; refer to Table I for a summary of all used notation;
we define the streaming process as a combination of two
tasks for each window of future knowledge: first the controller
schedules segments downloads given the available predicted
resources and the client reproduction status; second the deliv-
ery of the segments to the the mobile hosts with use of the
edge caches. The core of the scheduling algorithm is based on
a recursive function performed at the beginning of each time
window as described in Algorithm 1; this function searches
for an optimal path (sequence of segment bitrates) among
all possible combinations. Starting from time ¢ and given a
potential bitrate j for the next required segment with index ¢,
the controller determines the effect of such representation on
the download process and, once the entire future knowledge
window is consumed, determines the QOE of the selected
path. The function calculates the download time for the given
segment using the available throughput and residual capacity
from previous steps. Each time the function is called from
the base algorithm, the starting residual capacity is assumed
to be zero. In recursive calls, the residual capacity in the
core network, if available according to the known cumulative
throughput functions C' and F, may be adjusted. As long as the
knowledge window limit is not reached, the recursion follows.
Once the end of the window (or potentially the end of the
video) is reached, the utility function value of the current path
is calculated and compared with the best path previously found
and only the better of the two is kept. In case a rebuffering
time event is detected, the path is declared invalid and the
function returns. Our algorithm can be summarized in four
main steps:

1) Avoid overrunning the client buffer by waiting until some
space is created (lines 9-17).

2) Calculate the download deadline for the considered segment
(ta,;) and, given the previously accumulated unused capacity,
evaluate if the deadline can be met by calculating the amount
of time necessary to transfer the required data (. ;); if not,
return the previously found best path (lines 18-24).

3) If the future window has been consumed or the end of the
file is reached return the GREATEST between the current
path and the previous best path based on their utility value
(lines 25-27 and 35-37).

4) Otherwise recursively evaluate the same function for the
next segment (index ¢ + 1) over its possible representations.
(lines 28 to 34).

After completing the recursive process, the sequence of
segments with the highest QoE value is returned and the
controller can use it to instruct the other components on how
to proceed (i.e. instruct the clients and the caches on how to

Algorithm 1 Path building algorithm
1: function FINDOPTIMALPATH(Z, j, UC, Wy, B, Dy, ¢pest)
2 // i - next segment index
3 // j - assumed bitrate of the next segment
4 // UC - available residual capacity
5: // W, - remaining time in knowledge window
6
7
8
9

// B video buffer available at client
// Dy time to complete displayed segment
// Gvest - current best path found

: if B == max_buffer_size then
10: wait until the end of current displayed segment
11: if D; > W, then
12: return GREATEST(Qpest, current_path)
13: else
14: reduce B by segment size
15: Dy < segment size
16: end if
17: end if
18: UC' < increment given waited time
19: te,s < segment download time
20: if t. ; < W, then
21: if teﬂ' > B + D; then
22: // Rebuffering time > 0
23: return @pegst
24: end if
25: if i == N then
26: // Reached end of video
27: return GREATEST(@pest, current_path)
28: else
29: Wi =W, —te
30: update B, D¢ and UC given t.;
31: for all bitrates m do
32: FINDOPTIMAL-

PATH(i + 1, m, UC, Wy, B, D¢, ¢pest)

33: end for
34: end if
35: else
36: return GREATEST((pest, current_path)
37: end if

38: end function

proceed for downloading the selected segments).

Interleaving windows. The main characteristic of our algo-
rithm is that it greedily tries to use as many resources as are
available in the time window without much consideration for
the following time slots. Since the QoE cost of switching to
a higher bitrate is lower than the cost of switching to lower
bitrates, the consequence of such behavior is the tendency to
select higher bitrates toward the end of the window to consume
the available remaining capacity. This is not always the optimal
path in the longer run, since it might be necessary to choose
a lower bitrate at the beginning of the next time window, and
thus suffer the QoE drop due to switching to a lower bitrate
immediately afterwards. To avoid this problem, we consider



an alternative solution: while we still apply the same algorithm
for the complete window of size W to select the best path, we
only apply the obtained optimal path until an earlier moment
W —t;, where t; is smaller than W. This way we prevent a
higher bitrate from being selected in the last ¢; of the time
window W, avoiding possible quality drops at the beginning
of the next window. After this is done, the new considered
window will start from time W — ¢;.

Optimality. Our algorithm is optimal as it exhaustively consid-
ers all possible rate trajectories under the available estimated
rates and returns the one which maximizes the objective
function. This is possible owing to the fact that the set of
rates is relatively limited, and that we can predict the future
rates with accuracy only for a relatively short window of
time, therefore the number of potential rate combinations
to compute is not prohibitive. The algorithm can be made
less computationally intensive by taking into account some
considerations: (1) as quality transitions (in particular negative
ones) negatively affect the final utility value, we can set a limit
on the number of these events; in particular, the number of rate
transitions cannot be more than the utility of the highest rate
minus the utility of the lowest rate divided by the penalty of a
rate transition; (2) if the bottleneck bandwidth is always higher
than a certain bitrate during the duration of a time window,
all video representations with lower bitrate can be left out of
consideration.

IV. SIMULATIONS

In this section, we evaluate the gains achieved by our system
and joint rate adaptation through a set of Matlab based simula-
tions. In order to understand its potential, we implemented the
core logic of our system and compared it to the behavior of
common DASH implementations. While different proprietary
algorithms are used in some of the available commercial
solutions (e.g. Apple HLS, Adobe HDS, etc.), we implement
our baseline following the behavior in the logic implemented
by Netflix-like video services, which can be summarized in
two main characteristics:

o the DASH client downloads and keeps only video seg-
ments for the following ¢ seconds of playback at any
given time (i.e. the buffer size is limited by time, not
data space);

o the DASH client logic adapts video quality by a moving
average of the data rate estimates experienced on the
previous k segments delivered (we set k& to 5 for our
experiments).

While it is easy to identify a wide selection of factors that
might affect the final results of our simulations, we try to fairly
compare the baseline with the two variants of our algorithm
by applying the same conditions for each run (i.e. evolution of
network infrastructure resources during the experiment time).
In the next two subsections we will describe the model used to
characterize these resources and the video data set employed
in our tests.

Video Dataset and QoE Model. For this set of simulations,
we used a video content of 5 minutes of length. The video
is divided into 2 second long segments, with each segment
available in three different bitrate representations (1 Mbps,
400 kbps and 100 kbps for the first case, 2 Mbps, 1.2 Mbps
and 300 kbps for the second). While our system supports
Variable Bitrate for the video segments, we use only constant
bitrates for these simulations (i.e. all segments at the same
quality level have the same size). The Quality of Experience is
calculated following the description provided in Section III-C,
using parameters: a =1, =1,y=1=n=0.1.

System Resources and Network Model. In our simulations
we do not take availability of video segments at different
servers into consideration; we use a single server that has the
desired video content available at all times. Moreover, we do
not consider any limit in the cache size of the intermediate
nodes. We provide results using two different network models,
one synthetic, one trace-based:

- first, we model the available network bandwidth as a classical
two finite-state, discrete-time Markov chains, where transitions
occur at constant times, every 2 seconds, and transitions occur
only between the two nearest states; this is done to try to
capture slow variations attributable to client mobility (for
the wireless links) and evolution in congestion for the core
network. The Markov chains used to produce the presented
results are shown here, but we obtain similar results for a
wide range of transition matrices and rate parameters:

0.5 0.5 0.0 0.0 0.0 0.0 100
033 033 033 0.0 0.0 0.0 300
0.0 033 033 033 00 0.0 500
Pg = REg =
0.0 0.0 033 033 0.33 0.0 700
0.0 0.0 0.0 0.4 0.4 0.2 900
0.0 0.0 0.0 0.0 0.7 0.3 2300
0.5 0.5 0.0 0.0 0.0 0.0 700
0.33 033 033 0.0 0.0 0.0 900
0.0 033 033 033 0.0 0.0 1100
Pc = Rc =
0.0 0.0 033 033 033 0.0 1100
0.0 0.0 0.0 033 033 0.33 1100
0.0 0.0 0.0 0.0 0.5 0.5 1300

where Pp represents the transition matrix for the wireless
edge access network where for each state the corresponding
bandwidth is shown in Rg (expressed in kbps); the same
values are shown for the core network in Pc and Rc.

- second, we use a real cellular trace, collected and presented
in [37]. This trace consists of multiple days worth of data
collected in a real metropolitan environment in a European
city, using a HSDPA modem while commuting with public
transportation. The core network is modeled similarly to the
previous case, using the same transition matrix but with
the following values for the available throughput: Rc =
[1000; 1200; 1400; 1600; 1800; 2000]7".

Results. We evaluate our system under two varying factors:
video buffer size available to the DASH client and window of
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Fig. 4: Simulation results. Figures a-d provide results for a Markov chain based wireless model, while Figures e-h use real

world traces collected in an urban environment.

future knowledge of available bandwidth at the two analyzed
network components. The first factor varies between 5, 10,
20, 40 and 80 seconds. The second between 5, 10 and 15
seconds; we selected 5 seconds as the base for this metric as
smaller values would not provide enough future information
to take full advantage of the proposed algorithm (although we
still notice quality improvements over such scenarios) and 15
seconds as the biggest value as bigger values would cause the
potential space of the solution to explode making the proposed
algorithm too computational intensive. Figure 4 collects all
the obtained results. For each of the data points represented,
we repeated the experiment 5 times and collected the average
result. This does not apply for the baseline in Figures 4g and
4h as the future window size can vary only for our algorithms;
for these cases we used a single data point using client buffer
size of 20 seconds. In general, the results confirm the overall
benefit of our system with gains of at least 15% points in
the utility value for both our algorithm versions. This not
only corresponds to a more stable experience (as variations,
in particular decreases in quality, strongly affect the final QoE
value), but also in a higher average bitrate quality for all the
experiments analyzed.

As expected, the buffer size available for the clients is
not a major influencing factor for the analyzed use case, as
neither algorithm uses the buffer size information to modify
its adaptation logic; we expect this parameter to gain more
importance for longer videos, where a low bandwidth period
might be better compensated by accumulated buffer.

More interestingly, we can notice that increasing future
knowledge window size also increases the computational cost
of scheduled delivery time deadlines, since there are now
longer periods of time that are considered in the calculation.

The achieved gains in this case might not justify the additional
processing time costs.

Comparing our two proposed algorithms we notice an im-
portant result: the interleaved solution outperforms the normal
solution in terms of utility but gets outperformed in terms
of average bitrate; this is due to the greedy behavior of
the normal algorithm explained in the design section. These
results confirm our initial guess: that the interleaved solution
is better at maintaining an average video bitrate closer to the
highest available video bitrate less than the average bitrate
experienced in the access network, providing a more stable
viewing experience for the user of the system.
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Fig. 5: Max buffer occupancy over different runs.

Figure 5 shows the employed memory usage at the network
caches. In particular, it shows the cache size for the single
client experiment of the first analyzed case. This value enables
us to understand the resource cost of running our system,
and is of particular interest to service providers that would
implement such a caching scheme as scalability is directly
affected by the consumed resources. The amount of video data
buffered at the cache nodes using our algorithm ranged from



0 up to 365 kB, meaning that it would scale well for larger
videos and higher number of clients and not impose a high
resource cost for the provider of the service.

V. CONCLUSIONS

As network congestion can arise from either the core or
the wireless edge (as observed in current networks under the
stress of video streaming applications[1]), we have presented a
system that takes advantage of a cache in between these two.
Our model is based on DASH and assumes that bandwidth
consumption and network congestion has a coherence time that
allows to predict capacity over a short time window. Compared
with DASH, our system improves the usage of the available
end-to-end throughput between the server and the client. We
optimize the video delivery method, utilizing the intermediate
nodes between the server that has the whole video content
available, and the client, as an intermediate video content
cache. This enables us to increase the effective throughput in
certain parts of the network path, and to improve the end-user
QoE.

We evaluated the gains achieved by using our system with
a set of Matlab simulations. We implemented our algorithm
and compared it with the behavior of DASH implementations
against synthetic and real throughput traces. Our evaluations
demonstrate that our method of video delivery improves the
Quality of Experience for the end user by keeping the bitrate
more stable and achieving significantly higher average bitrates
than the benchmarks. While it does introduce some additional
costs for the content provider, we claim that the resource costs
are minimal, and the achieved gain outweighs the computa-
tional costs.
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