
In-Network Compute Extensions for Rate-Adaptive
Content Delivery in Mobile Networks∗

Francesco Bronzino, Chao Han, Yang Chen†, Kiran Nagaraja, Xiaowei Yang†, Ivan Seskar and Dipankar Raychaudhuri
WINLAB, Rutgers University, North Brunswick, NJ 08902, USA

Email: {bronzino,chaohan,nkiran,seskar,ray}@winlab.rutgers.edu
† Department of Computer Science, Duke University, Durham, NC 27708, USA

Email: {ychen,xwy}@cs.duke.edu

Abstract—Traffic from mobile wireless networks has been
growing at a fast pace in recent years and is expected to
surpass wired traffic very soon. Service providers face significant
challenges at such scales including providing seamless mobility,
efficient data delivery, security, and provisioning capacity at
the wireless edge. In the MobilityFirst project, we have been
exploring clean slate enhancements to the network protocols
that can inherently provide support for at-scale mobility and
trustworthiness in the Internet. An extensible data plane using
pluggable compute-layer services is a key component of this ar-
chitecture. We believe these extensions can be used to implement
in-network services to enhance mobile end-user experience by
either off-loading work and/or traffic from mobile devices, or by
enabling en-route service-adaptation through context-awareness
(e.g., knowing contemporary access bandwidth). In this work
we present details of the architectural support for in-network
services within MobilityFirst, and propose protocol and service-
API extensions to flexibly address these pluggable services from
end-points. As a demonstrative example, we implement an in-
network service that does rate adaptation when delivering video-
streams to mobile devices that experience variable connection
quality. We present details of our deployment and evaluation
of the non-IP protocols along with compute-layer extensions on
the GENI testbed, where we used a set of programmable nodes
across 7 distributed sites to configure a MobilityFirst network
with hosts, routers, and in-network compute services.

Keywords—Internet architecture, mobility, in-network comput-
ing, cloud, video streaming, rate adaptation, video transcoding

I. A CASE FOR IN-NETWORK COMPUTE

Mobile devices such as smartphones and tablets have
overtaken personal computers to become the primary platform
for accessing the Internet. Internet reports caution, however,
that video constitutes a majority of the traffic and will in-
creasingly dominate mobile data in the future [1]. With this
growing trend, service providers face significant challenges
in providing quality service while maintaining high network
efficiency. Mobility further complicates the user-experience
aspect due to variable link quality, temporary disconnections,
and seamlessness when crossing physical networks. Service
providers commonly adopt short-term strategies of limiting
user network activity with expensive data plans and bandwidth
throttling, and end up with outright poor or patchy service
performance. While better spectrum management and capacity

∗Research supported by NSF Future Internet Architecture (FIA) grants
CNS-1040735, CNS-1345295, and CNS-1040043

improvements promise to help, we argue that innovation in
network protocols and in-network services can provide large
improvements over current data delivery efficiency, particularly
in mobile wireless networks.

Widely deployed middlebox solutions such as content
proxies have helped since the early days of the Internet to
opportunistically improve data delivery performance. In recent
years, content delivery networks and cloud platforms boast
further gains through strategic placement and geo-colocation
of content and services with end-user. However, these solutions
have often aimed to improve raw server-client RTTs, but
do not address specific challenges of wireless networks or
mobile devices in any meaningful way. CDNs and cloud
applications are generally built as overlay services that can
react to long-term differentiation in path qualities. While this
may suffice for certain applications and when endhosts are
on fixed wired networks, wireless networks aren’t similarly
benefited. A mobile device in a wireless network may have
vastly different network experience in a short time span due
to location, network load, or the particular access technology
available(e.g., 3G, 4G or WiFi). For wireless networks, it is
well understood that traditional content delivery methods, and
in particular, connection-oriented transport protocols, have not
provided satisfactory performance. We think that network-
assisted approaches (e.g., storage and compute as integral
components of the network) can provide a boost for content
delivery in mobile wireless networks.

Streaming video, in particular, can benefit from an ap-
proach where the video bitrate can be dynamically adapted
to match available bandwidth at the client access link using
in-network compute resources. It is well known that the last-
mile is usually the bottleneck link, and for wireless clients,
the network performance could be highly variable under mo-
bility. Solutions that address network performance variations
today either buffer excessively at the client, or require client-
side estimation of available bandwidth. While over buffering
could be wasteful, accurate client-side estimations of available
bandwidth is known to be problematic [2]. Furthermore, recent
studies have shown that a multiplicity of rate-adaptive flows
at access networks can lead to unexpected degradation and
instability in delivery performance [3]. To address these chal-
lenges and to enable a host of novel value-add services (e.g.,
embedding of ads, localized alerts, regional subtitles, etc.), we
argue for a network-assisted solution for rate-adaption. The
placement of such an adaptation service close to the edge/978-1-4799-6204-4/14$31.00 c©2014 IEEE



Fig. 1: MobilityFirst architecture.

would also enable the most accurate estimation of network
performance as experienced by the client. As argued by
others as well, we think the wireless service providers could
make use of such in-network adaptation services as a way to
effectively manage video flows at an aggregate level to handle
traffic bursts, and to implement fairness, stability, and efficient
delivery in the access network.

In this work, we leverage the compute-layer extensions
to the data plane being explored within the MobilityFirst
(MF) Future Internet Architecture (FIA) project [4], [5], [6]
(overview in Section II-A) to implement in-network rate
adaptation of streaming video delivery to mobile endpoints.
We present details of the in-network computing architecture
(Section III) and show through the rate-adaptation service
example (Section IV) how in-network services can be deployed
and addressed by endpoints. In Section V we describe the
specifics of how we support in-network services in our MF
prototypes and also implementation of the rate-adaptation
service that we ran as part of the PacketCloud framework [6].
Finally, Section VI details our deployment of a prototype MF
network over the GENI wide-area testbed and our experiences
evaluating the video-adaptation service.

II. BACKGROUND

A. MobilityFirst Name-based Network Architecture

MobilityFirst proposes a network architecture, protocol,
and services with the principal goals of supporting seamless,
at-scale mobility, and trustworthiness in the future Internet.
Figure 1 shows the main components of the architecture: a
fast and scalable global naming service (GNS), a hop-by-hop
reliable data transport, and a routing fabric that is edge-aware
and leverages in-network storage, all of which collectively
target growing challenges at the mobile and wireless edge, but
also the evolving computing landscape in the future Internet.

Name-based Network API: At the core of the architecture is
the name-based networking abstraction that contrasts with the
name-address conflated communication interface exported by
Berkeley sockets and the TCP/IP stack. All network-attached
objects in the new architecture enjoy direct addressability
through long lasting unique network names or identifiers (we
use GUIDs). This new GUID-centric network service API, first

presented in [7] offers network primitives for basic messaging
(send, recv) and content operations (get and post) while
supporting several delivery modes innately supported by the
MF network such as multihoming, multicast, anycast and DTN
delivery. Combined with the GUID indirection and grouping
(GUID mapped to one or more other GUIDs) concepts sup-
ported by the naming services, the new communication API
can produce novel addressing and delivery capabilities only
indirectly possible (and with certain in-efficiency) in today’s
IP architecture.

Support for at-scale mobility. Names for network objects
are flat, self-certifying, Globally Unique IDentifiers (GUIDs)
and apply to all network principals including hosts, services,
content, and even abstract context - e.g., location). The pro-
tocol stack differs prominently from the current IP stack by
including a GUID service layer which forms the new narrow
waist and provides naming service by resolving GUIDs to their
contemporaneous locators or network addresses. This resolu-
tion is enabled by a globally accessible distributed naming
service (GNS), which is used by objects to both announce
their latest location/address and lookup end points they wish to
communicate with. We have explored and validated 2 alternate
designs for the GNS: one an in-network service that closely
integrates with the routing fabric[8] to minimize network
latencies, and a second overlay implementation that optimizes
through dynamic replica creation and placement of name
services [9]. Both designs broadly meet our low resolution
latency goals of less than 100ms on average for name lookup
operations [8], [9]. Small resolution latencies are also crucial
for dynamic or late-binding options in the network protocol,
where en-route routers can (re)bind the latest network address
of a device that is mobile.

Efficient data delivery to mobile networks. To address
the poor performance of end-to-end transports in wireless
conditions [10], [11], MF uses a segmented transport to
progress data reliably hop-by-hop. Data is segmented into
blocks that are cached at storage-enabled routers for in-
network retransmission under losses. Experiments with this
transport under a variety of wireless conditions have shown
significantly improvements in fairness, throughput, latency and
robustness [12], [13]. A new generalized intra-domain routing
protocol is designed to flexibly find paths across wired, wire-
less and DTN segments [14], while accommodating mobile
device disconnections with in-network storage. An edge-aware
inter-domain routing that use smart propagation of capacity
and load conditions at the edge of the network towards the core
through telescoping updates, enables effective path discovery
and informed forwarding decisions when delivery content to
wireless networks, and to mobile and multihomed devices [15].

III. IN-NETWORK COMPUTE ARCHITECTURE

To enable future extensions to the network protocol, with-
out expensive hardware replacements and disruption, Mo-
bilityFirst builds in an optional and dynamically pluggable
compute plane. Examples of such need are additions of new
service types, new principal types, new addressing structures,
or extensions to the end-to-end security protocol. We envision
service providers and network operators to be able to perform
relatively simple upgrades in the form of software updates
and addition/replacement of pluggable hardware modules to



extend the data plane functionality. Furthermore, we also pos-
tulate that such extensibility can enable third party application
service providers (via the ISPs) to deploy either service end-
points or service adaptors that are both closely integrated with
the delivery path and best located to improve client experience.

A. Overview

Consider an end-to-end application service S that requires
content delivery to mobile end-points. For simplicity, let us
assume a server-client interaction model with a fixed server
and a mobile client. Under good conditions, when the mobile
client has good connectivity to the network core, the server
responds to the client request by delivering the highest fidelity
content (C). Under these conditions MF provides hop-by-hop
transport under either unicast or multihomed delivery (e.g.,
when connected to both 4G and WiFi) as specified by the
delivery service type during a send operation. Short-lived
disconnections or minor variability in the access link can
effectively be handled through a combination of in-network
store-forward buffers in MobilityFirst routers (MFR) and con-
tingency buffering at client ahead of actual consumption rate
(e.g, video playback). If access conditions change significantly,
however, and remain so for extended periods of time, it
will become hard if not impossible to deliver the original
high-fidelity content to the client in a timely manner. These
conditions may occur under a burst of traffic or when the
client moves to outer/poorer coverage area. In these cases,
the compute plane extensions allow an authorized adaptor
AS service, regionally co-located with the client’s network, to
intercept and modify original data C to subsequently deliver
C’ that is commensurate to existing bandwidth constraints. A
second demonstrative scenario for an in-transit adaptor service
is for delivery content that is context-sensitive (CX - for context
X). Client mobility may redefine context (X’) thus requiring an
adaptation to the delivered content(CX’).

B. Key Components

Enabling this dynamic adaptation requires compute ser-
vices to be addressable, application providers to be able to
deploy these services at appropriate points in the network,
traffic to be correctly steered when beneficial, integrity of con-
tent and protocol continuity to be maintained post adaptation,
and finally, applications should be provided a flexible service
interface to invoke these services.

Service Addressing Generally, the compute layer will host
services that are directly addressable by information contained
in the data packet, i.e., the GUID of the service is explicitly
specified in the packet as an extension header. However,
service providers may also invoke specific compute services
on packets based on header signatures alone, e.g., source-
destination GUID or NA fields. These transparent services are
similar to middlebox approaches today, which are routinely
used to support application-layer proxies, content caches, traf-
fic steering, and security functions. We allow for both directly
addressable and transparent services (which may also have
internally known GUIDs) in the MF compute plane.

Hosting Platform and Registration While routing fabric
could potentially steer traffic to service endpoints located
anywhere, packets will suffer least additional latency when

the compute platform is co-located with the routing fabric.
We envision both close hardware integrated solutions, where
routers are embedded with a compute plane composed of
general purpose CPUs, GPUs or pluggable accelerators , as
well as co-located compute clusters or smart-sized clouds as
possible platforms for hosting computer services. While the
latter is less flexible and is challenging to scale, it presents
the least overhead when the computations are limited and do
not require access to other distributed state. Data compression
or certain security checks are examples. When the compute
service are more intensive, need to operate across a sequence
of packets, or need access to distributed state, it appears that a
co-located cloud is a better fit, as described in our PacketCloud
instantiation [6]. In each case, MFR exports an interface
for services to register a GUID addressable service with the
forwarding plane. The attachment of the service instance will
also be updated within the GNS to enable data packets that
request the particular compute service to be routed correctly.

Geo-location and Routing We expect that one or more
instances of an in-network compute service will selectively
be deployed at locations seen as beneficial to the application
provider, primarily due to expenses incurred in running on the
platform provider. Since application services may be consumed
by clients across the globe, it implies along certain paths
these in-network adaptation services may be unavailable. Such
clients are either served through end-to-end adaptation only,
or alternatively, packets may be routed through paths that do
have registered service instances and do not cause too much
path stretch. This can be done in MF through native tunneling,
where packets are first tunneled to the network hosting the
service (known to application provider, and also registered in
the GNS), and following adaptation are then routed to the
destination client. In the non-tunneled default case, the packets
are routed first to the target network of the client, where the
compute plane service, if available, will act on the packet.
With these, application providers can plan placement of their
services according to benefits to their end-users, so long as
ISPs in those geo-regions provide an open hosting platform.

IV. IN-NETWORK RATE ADAPTATION

In this paper we focus our attention on a specific use
case providing details on how the service and content APIs
could be jointly used to offer an in-network service that
does rate adaptation when delivering video streams to mobile
devices that experience variable connection quality. Bitrate
adaptive streaming protocols have been widely adopted in most
commercial solutions thanks to their flexibility in providing the
desired service given variable network conditions. In particu-
lar, Dynamic Adaptive Streaming over HTTP [16] has been
increasingly chosen as the standard go to solution thanks to its
easiness of implementation, as it relies on the already existing
HTTP infrastructure of webservers, proxies and caches. While
it is easy to reckon the simplicity behind these protocols, they
all rely on the ability of the client to estimate the available
bandwidth, a task arguably very difficult under normal net-
work conditions [2], and even more complex under wireless
and mobile environments due to the high dynamicity caused
by time-varying fading, shadowing interference and hand-off
delays [17], [18]. Introducing an in-network service to provide
the adaptiveness of the video stream behind these protocols,
would allow to off load the task of deciding on the adaptive



Fig. 2: Overview of rate-adaption use-case showing MobilityFirst’s support for direct addressing of content and in-network compute services

stream to the components having the best knowledge about
the available resources while maintaining most of the original
good properties of these solutions; on the other hand, overly
complicated services would discourage adoption.

To deploy an in-network service, the service developer,
which for video streaming may either be the content distributor
or the edge-network service provider, has to deploy, configure,
and initialize the service instances at required network loca-
tions. To bring up an in-network service we refer the reader
to the PacketCloud framework [6]. Once the service is up, the
content server may pass further configuration such as listings
of videos and available bitrates. Such metadata is transferred
in the form of Media Presentation Description (MPD) files
specified by the MPEG-DASH standard. To accomodate MF
naming, we replace the content URLs in the MPD files with
corresponding content GUIDs. Such config could be done out-
of-band and apriori in preparation of handling the server-client
flows. Though, the server may embed certain metadata, such
as current bitrate, as parameters in the extension headers of
the response chunk itself.

Leveraging and extending in-network functions. As pre-
viously introduced, MF offers native support for a variety
of delivery services through the use of service type and
service options. We have extended the basic set of name-
based communication primitives to support the compute-layer
service type and options, allowing application developers pro-
grammatic and in-band access to in-network services deployed
on the compute plane. Figure 2 shows the flow of meta-data
and data in a video streaming service implemented using the
in-network extensions.

First step involves the server establish network presense for
the content (and hence direct addressability). It does so by
attaching the GUIDs for the video segments to the network:

mfattach(sock, GUID-set)

where GUIDs in GUID-set GUIDs will be associated with
NA(s) corresponding to the host’s one or more network at-
tachment points, resulting in GNS mappings.Following this,
the streaming proceeds as sequence of content requests and
responses between client and server, starting with a request
for video meta-data, i.e., the MPD file:

mfget(sock, GUID, data buf, size, svc flag, opts)

where GUID is a segment’s GUID retrieved from the MPD
file, and the svc flag and opts encode any special delivery

requests such as ‘ANYCAST’. When the server receives a
request (via mfrecv), it replies with the segment using MF’s
response API that matches the response with the corresponding
get. To enable in-network rate-adaptation, the server requests
the compute-layer delivery service, specifying the GUID of
the transcoder service and the current encoded bitrate:

mfget response(sock, getId, data buf, size, svc flag, opts)

where getId (returned during preceding recv) is used to match
the get request, and svc flag (‘COMPUTING’) and opts (in
key-value pairs) encode details of the compute layer service
to be invoked on the payload. The server adds the GUID of the
compute service and the current encoded bitrate to the options
parameter. Note that the response chunk may not always be
steered to the compute service before reaching the client, and
the decision will be based on the bandwidth available to the
client device at the time of delivery. This is enabled through
a routing-layer service implemented on the edge router.

V. IMPLEMENTATION

The in-network compute architecture consists of: a new
network stack and socket API for hosts that implements the
service interface used by the end hosts of the system, a
software router that implements the hybrid GUID and NA
based forwarding and storage-aware routing protocols, and
a computing engine/platform that presents an open API for
configuring and running in-network services.

Host Stack and API. The host stack has been implemented
on Linux and Android platforms as a user-level process
built as an event-based data pipeline. The stack is composed
of a minimal end-to-end transport to provide message level
reliability, the name-based network protocol including the
GUID service layer, a reliable link data transport layer, and a
policy-driven interface manager to handle multiple concurrent
interfaces. The device-level policies allow user to manage how
data is multiplexed across one or more active interfaces. The
previously introduced socket API is available as a linkable
library and implements the name-based service API which
include the primitives send, recv, and get and a set of meta-
operations available for instance to bind or attach a GUID to
one or more NAs, configure transport parameters in the stack,
or to request custom delivery service types such as multicast,
anycast, multihoming, or in-network compute. Additionally to
the general aspects just presented, the host stack, in coordi-
nation with the API interfaces, provides the functionalities
to interact with the in-network service; we introduced in the



the previous sections different alternatives to provide tools
for interacting with the network compute services; for this
particular implementation, we exploited the option provided
by the MF network protocol of flexibly introducing extension
headers in the network header. The host stack is then in
charge of accordingly fill in the fields of the extension header
providing information regarding the carried video segments,
such as bitrate and encoding information as passed from the
application layer during the content operations invocations.

Video Client and Server. We use the presented host stack
and API to implement a modified DASH system that exploits
the in-network service. In order to implement a DASH video
client that can rely on the in-network adaptation instead of
implementing bitrate adaptation locally, we took advantage
of the VLC-DASH plugin presented in [19] and modified it
to display received segments independently of the delivered
representation. We’ve implemented a basic DASH webserver
using MF network API that handles requests for content (i.e.,
video segments and meta files) addressed by their GUIDs.
In order for the plugin to work with the MF network and
the implemented server, HTTP requests are forwarded to a
proxy co-located on the same machine that translates URL
request to MF content GUID requests. Mappings from video
segments URLs to GUIDs is implemented using a local data-
base, but we plan on developing a name resolution service for
future experiments; a single GUID is used to identify segments
independently from their bitrate.

Router. The software router is implemented as a set of routing
and forwarding elements within the Click modular router.
The router implements dynamic-binding using GNRS, hop-
by-hop transport, and storage-aware routing. It integrates a
large storage – an in-memory hold buffer – to temporarily
hold data blocks when destination endpoints during short-
lived disconnections or poor access connections. For dynamic
in-network binding of GUID to NA, the router is closely
integrated with the in-network GNRS. It attaches to a local
instance of the distributed service, which is often co-resident
on the physical device, but can also be hosted on separate
co-located node. GUID-to-NA mappings once looked-up are
cached by the router until TTL or expiry values established at
the time the binding was created. The access routers implement
a rate monitoring service that tracks the available bandwidth
for each attached client. For the WiMAX network, the rate
is obtained from the WiMAX base station which exports the
most recent downlink bitrate allocated to each client by the
scheduler based on a client’s location, client offered traffic, and
overall load on the BSS. We have implemented a similar rate
monitoring capability for WiFi Access Points using standard
802.11 netlink configuration utilities. The monitored informa-
tion is then used to select the eventual necessity invoking the
transcoding service; this choice is implemented as a simple
threshold logic where segments are forwarded if their required
bitrate is not met by the available bandwidth. In the case
segments need to be transcoded, the router forwards them
to the transcoding service adding the available experienced
performance to the chunk’s extension header.

Cloudlet. Our hosting platform for compute services is based
on the PacketCloud framework [6]. A cloudlet at a minimal is
composed of a controller module, a pool of compute nodes,
and a service interface that exposes management API for

Fig. 3: Prototype components deployed on the GENI testbed

application providers to manage the lifecyle of their compute
services. The controller can dynamically provision whole com-
pute nodes per service or run them in virtual environments with
clean isolation. For our Linux-based implementation, we use
Linux Containers (lxc) as a light weight VM solution. The
controller interfaces with the co-located router to register/de-
register service GUIDs to control traffic steering between the
router and the compute service. In our current implementation,
traffic is steered over a TCP link set up between the software
router and a basic TCP server running within the VM that
hosts the service. The interaction protocol encodes the packet
payload and some meta information such as input arguments
supported by the compute extension headers. Lower overhead
mechanisms to implement the interface are being considered.

Rate-Adaptor Service. The in-network rate-adaptor service
combines both caching and transcoding functions. Video seg-
ments that require transcoding to a different bitrate can either
be transcoded in real time, or returned from the cache if a
version of the segment in the target bitrate exists. The cache
entries can be populated from both in-transit video segments
as well as those that emerge from a transcoding operation.
Limitations on both storage and compute resources present
interesting tradeoffs across optimal reuse and minimizing the
latency of transcoding in real-time. The transcoding functions
are based on the ffmpeg multimedia framework. Once received
segments reach the adaptor they get transcoded based on the
statistics obtained from the chunk extension header, selecting
between the different potential encoding bitrates.

VI. PROTOTYPE EVALUATION

A. Deployment on GENI Wide-Area Testbed

The GENI testbed supports deep programmability by al-
lowing experimenters to run custom network and software
stacks on testbed nodes, and through flexible interconnection
specification (incl. layer-2 links) [20]. It provides scale and
a large geographic footprint by stitching together several
academic and other non-commercial testbeds using Internet2’s
10/100 Gbit backbone network and a host of other regional
networks that connect up the individual institutions. The
resulting nation-wide testbed with a variety of wired and
wireless segments, aims to emulate, albeit in a limited way,
the heterogeneity of the real Internet.

Experiment Setup. We deployed MF prototypes at seven
GENI sites as shown in Figure 3. The routers, naming servers,
and applications run on Xen VMs (total 14, 2 VMs per site)



Link Link Type Bandwidth (forward / reverse) Rtt (ms)

Video Server (Wisconsin) — MFR (Wisconsin) 10G Ethernet (VMs shared) 4.86 / 2.58 Gbps 0.72 ± 0.11

MFR (Wisconsin) — MFR (Illinois) Ethernet/Fiber 411 / 418 Mbps 8.9 ± 0.10

MFR (Illinois) — MFR (Rutgers) Ethernet/Fiber 83.3 / 92.6 Mbps 78.7 ± 3.95

MFR (Rutgers) — Transcode Server (Rutgers) 10G Ethernet (VMs shared) 937 / 479 Mbps 0.51 ± 0.04

MFR (Rutgers) — Video Client (Rutgers) WiMAX 9.49 / 1.05 Mbps 54.88 ± 2.87

TABLE I: Performance of links on the path from server at Wisconsin to VLC client at Rutgers.

each with 1 GB memory and one 2.09 GHz processor core.
At the Rutgers site we also provision a raw node to run
the transcoding server. Each MFR is configured with 1 or
2 interfaces depending on their role as core router or as an
access/edge router, respectively. All routers have a core-facing
interface connected to a layer-2 network that connects all
seven sites. This was setup using a multi-point VLAN feature
provided by Internet2’s Advanced Layer-2 Service (AL2S).
Routers at three sites (viz. Wisconsin, Rutgers, NYU) are
configured with a second interface connecting to the local
wireless network (WiMAX). Mobile wireless or emulated
clients connect to MF network through this interface. Routers
are each configured with 500 MB of hold buffer space, and
have access to a GNS service instance co-located on the
same node. The GNS service runs at all seven sites using a
replication factor of k=3, and achieves a 95th percentile look
latency of under 80ms.

B. Evaluation of In-Network Rate-Adaptation

We used the above setup to evaluate the in-network rate-
adaptation service for a DASH video streaming application.
The MF-enabled DASH server ran at the Wisconsin site, while
the VLC client at Rutgers connected over WiMAX. Though
the Wisconsin site has a WiMAX client network, we connect
the content server over Ethernet to the access router to reflect
the high-bandwidth uplinks for server deployments. Table I
shows the performance of links along the server-client path,
showing clearly that the client link is the potential bottleneck.

DASH Video Dataset. We use the DASH video dataset
generated by Lederer et al. [21] using their DashEncoder. In
particular, we use the DASH-ized files they generated from a
1080p version of the Big Buck Bunny animated movie available
from here [22]. The DASH version of this video is available
in six different segment lengths (viz. 1, 2, 4, 6, 10 or 15 sec)
and at 15 to 20 different bitrate encodings (from 50 Kbps up
to 8000 Kbps) for each segment length. In our experiments we
use the fixed 480p resolution dataset with 2 second segment
lengths. The fixed resolution allows fixed playback size and
the shorter segment lengths allows for entire segment to be
encapsulated in a single chunk for the hop-by-hop transfer.

Microbenchmarks. We measured the latency overhead of
steering video chunks to the in-network transcoding service
as the time taken to packetize the chunk received at the
router, transmit it to the service, wait time, time to receive the
response, and to chunkify the payload so it can be forwarded-
on to the destination. Figure 4 shows the response time in
relation to the original chunk size. Since actual transcoding
delays vary substantially with the transcoding profile, we
benchmark here the ’cached’ transcode operation. Upon re-
ceiving a chunk and extracting the the encoded bitrate and

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000

 L
a
te

n
c
y
 (

m
s
)

Original segment size (KB)

2800-1900-kbps
1900-900-kbps

Fig. 4: Latency for in-network transcoding vs. segment size

the target bitrate parameters from the headers, the server
responds with a pre-transcoded file of the requested bitrate.
Therefore the overheads are primarily due to the messaging
operations at the router and cloudlet server, and the cost
to read the transcoded file from disk. In these benchmarks,
we warm the cache sufficiently to enable files to be served
from system buffers. As seen from the results for two sets of
transcode operations (2800 to 1900 Kbps, 1900 to 900 Kbps),
the overheads are in the order of few milliseconds to a few
10s of milliseconds for the larger segments. The big part of
the delay is the transmission time, making a case for tighter
integration of the compute service. These substantial delays
also emphasize smart choice for segment sizes under variable
client-access conditions, such as with a mobile client.

Emulated Mobility Experiment. We had previously described
how the client link is monitored at the access router via
the information exported by the WiMAX base-station. Any
variation in available bandwidth due to mobility or load is
available almost instantaneously at the router. However, for
the set of experiments we ran, the client is fixed and hence
sees little variation in its access link properties. We therefore
emulated the client mobility by intentionally modifying the
bandwidth reported by the measurement service to drop below
the rate required to support smooth video streaming at the
original encoded bitrate. During playback, the VLC client
keeps requesting the server for video segments of the animation
video as long as it does not fill its buffer measured in terms
of seconds of video. Under favorable conditions, the access
bandwidth available to the client is sufficient for streaming the
highest bitrate content made available to the user, i.e. 1900
kbps. This is the initial stretch (until about 30 sec) seen in
the client-side traffic plot of Figure 5. During this part, the
video segments traverse the server-client path without being
steered for in-network transcoding. Then as we emulate client
mobility at about t=30 sec, the lower client bandwidth triggers
steering of traffic to the transcoder, tagged with a target bitrate
of 900 Kbps. The steered traffic and the response traffic with



 0

 5000

 10000

 15000

 20000

 25000

 0  20  40  60  80  100  120  140  160  180

T
ra

ff
ic

 (
K

b
p

s
)

Time (s)

no transcode
with transcode

Fig. 5: Downlink traffic at client’s WiMAX interface

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  20  40  60  80  100  120  140  160  180

T
ra

ff
ic

 (
k
b

p
s
)

Time (s)

to-transcoder
from-transcoder

Fig. 6: Traffic between Rutgers MFR and transcoder

transcoded segments at the router-transcoder link is seen in
Figure 6. We emulate a second mobility event at about t=85
sec which once again reduces the traffic on client’s downlink.
Note that since the client’s downlink is actually fine, the
reduction is not an artifact of drop in available bandwidth.
Interestingly, however, the reduction during the second event
is less dramatic. The variable bitrate content happens to be of
lower size during this stretch. To handle such cases, it would be
help to have an estimate of the required over-the-air bitrate at a
finer granularity, perhaps at the segment level, to enable more
careful steering of segments for transcoding. While we did not
quantitatively evaluate video quality at the VLC client besides
bitrate (the quality transitions were noticeable of course), we
can report that we didn’t see any buffering pauses.

VII. FUTURE WORK

In this paper we presented the details of the pluggable com-
pute layer extensions we are exploring within the MobilityFirst
project. To demonstrate its usefulness we presented details
of our implementation of an in-network video transcoding
service that we evaluated over the GENI testbed using a set of
programmable nodes distributed across seven sites in the US.
Early results from our prototype evaluation indicate feasibility
and usefulness, however, a more detailed parametric study
of the video service under variable network conditions and
realistic mobility, and with consideration of user experience
aspects, will help make a case for practical usefulness and
convenience of our in-network rate adaptation service.

REFERENCES

[1] “Cisco Visual Networking Index: Global Mo-
bile Data Traffic Forecast Update, 2013-2018,”
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white paper c11-520862.pdf,
2013.

[2] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in Proceedings of the 2012 ACM conference on Internet measurement

conference. ACM, 2012, pp. 225–238.

[3] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chi-
ang, “A scheduling framework for adaptive video delivery over cellular
networks,” in Proceedings of the 19th annual international conference

on Mobile computing & networking. ACM, 2013, pp. 389–400.

[4] “MobilityFirst Future Internet Architecture Project,”
http://mobilityfirst.winlab.rutgers.edu/.

[5] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst:
a robust and trustworthy mobility-centric architecture for the future
internet,” ACM SIGMOBILE Mobile Computing and Communications

Review, vol. 16, no. 3, pp. 2–13, 2012.

[6] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi, “Packetcloud:
an open platform for elastic in-network services,” in Proceedings of the

eighth ACM international workshop on Mobility in the evolving internet

architecture. ACM, 2013, pp. 17–22.

[7] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri, “Network
service abstractions for a mobility-centric future internet architecture,”
in Proceedings of the eighth ACM international workshop on Mobility

in the evolving internet architecture. ACM, 2013, pp. 5–10.

[8] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin,
and D. Raychaudhuri, “DMap: A shared hosting scheme for dynamic
identifier to locator mappings in the global internet,” in Distributed

Computing Systems (ICDCS), 2012. IEEE, 2012, pp. 698–707.

[9] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A global name service for a highly mobile internetwork,”
in Proceedings of the 2014 ACM conference on SIGCOMM. ACM,
2014, pp. 247–258.

[10] S. Farrell, V. Cahill, D. Geraghty, I. Humphreys, and P. McDonald,
“When TCP breaks: Delay- and disruption-tolerant networking,” IEEE

Internet Computing, vol. 10, no. 4, pp. 72–78, 2006.

[11] M. C. Chan and R. Ramjee, “TCP/IP performance over 3G wireless
links with rate and delay variation.” Wireless Networks, pp. 81–97, 2005.

[12] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, “Block-
switched networks: a new paradigm for wireless transport,” in Proc.

of NSDI, 2009.

[13] S. Gopinath, S. Jain, S. Makharia, and D. Raychaudhuri, “An experi-
mental study of the cache-and-forward network architecture in multi-
hop wireless scenarios,” in Proc. of LANMAN, 2010.

[14] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: Generalized
storage-aware routing for mobilityfirst in the future mobile internet,” in
Proc. of MobiArch. ACM, 2011, pp. 19–24.

[15] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri, “EIR: Edge-aware
interdomain routing protocol for the future mobile internet,” WINLAB,
Rutgers University, Tech. Rep. WINLAB-TR-414, June 2013.

[16] T. Stockhammer, “Dynamic adaptive streaming over http: standards
and design principles,” in Proceedings of the second annual ACM

conference on Multimedia systems. ACM, 2011, pp. 133–144.

[17] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over http in vehicular environments,” in Proceedings

of the 4th Workshop on Mobile Video. ACM, 2012, pp. 37–42.

[18] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz,
“A comparison of quality scheduling in commercial adaptive http
streaming solutions on a 3g network,” in Proceedings of the 4th

Workshop on Mobile Video. ACM, 2012, pp. 25–30.

[19] C. Müller and C. Timmerer, “A vlc media player plugin enabling
dynamic adaptive streaming over http,” in Proceedings of the 19th ACM

international conference on Multimedia. ACM, 2011, pp. 723–726.

[20] “Global environment for networking innovations (GENI),”
http://www.geni.net.

[21] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming
over http dataset,” in Proceedings of the 3rd Multimedia Systems

Conference. ACM, 2012, pp. 89–94.

[22] “Big Buck Bunny movie,” http://bigbuckbunnymovie.org/.


