JITI: Dynamic Model Serving for Just-in-Time Traffic
Inference

X1 JIANG, University of Chicago, USA

SHINAN LIU, University of Hong Kong, Hong Kong

SALOUA NAAMA, Université Savoie Mont Blanc, France

FRANCESCO BRONZINO, Ecole Normale Supérieure de Lyon; Institut universitaire de France, France
PAUL SCHMITT , California Polytechnic State University, USA

NICK FEAMSTER, University of Chicago, USA

Accurate and efficient inference on network traffic through machine learning models is important for many
management tasks, from traffic prioritization to anomaly detection. Existing ML inference pipelines differ
primarily in their feature design: those based on summary flow statistics (e.g., packet sizes, inter-arrival times)
are lightweight and efficient, though they may be less accurate for fine-grained classification, whereas pipelines
that consume features directly from raw packet capture data can achieve higher accuracy but at significantly
greater computational and resource cost. In this paper, we develop Just-in-Time Traffic Inference (JITI), a model
serving system to support fast and accurate network traffic inference in raw packet-capture-based machine
learning inference pipelines. Offline, JITI builds a curated pool of diverse trained models with varied feature and
performance requirements. Online, JITI responds to traffic fluctuations via an adaptive scheduler that selects
the model from the pool that offers the highest accuracy-to-efficiency ratio within system resource limits,
thereby providing inference accuracy comparable to the more complex and resource-intensive packet-capture-
based methods, with minimal efficiency compromise. Using traffic application inference as an example task,
our evaluation shows that JITI improves inference performance by 18% over flow-statistics-based methods;
when benchmarked against state-of-the-art packet-capture-based methods, JITI results in a worst-case drop in
F1-Score of only 12.3%, while reducing the average inference decision time by ~127x.

CCS Concepts: « Computing methodologies — Machine learning approaches; « Networks — Network
manageability; Network security.

Additional Key Words and Phrases: traffic inference, online classification, network application inference

ACM Reference Format:

Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt, and Nick Feamster. 2025. JITI: Dynamic
Model Serving for Just-in-Time Traffic Inference. Proc. ACM Netw. 3, CONEXT4, Article 45 (December 2025),
24 pages. https://doi.org/10.1145/3768992

1 Introduction

Online network traffic inference is a common practice in network management. Accurate and
prompt inference decisions on traffic flows enable network operators to perform many essential
network operations tasks, from monitoring bandwidth utilization to prioritize traffic (e.g., for
latency-sensitive applications) to ensure quality of service (QoS) or avoid network congestion, for

Authors’ Contact Information: Xi Jiang, University of Chicago, Chicago, IL, USA, xijiang9@uchicago.edu; Shinan Liu,
University of Hong Kong, Pok Fu Lam, Hong Kong, shinan6@hku.hk; Saloua Naama, Université Savoie Mont Blanc,
Chambéry, France, saloua.naama@univ-smb.fr; Francesco Bronzino, Ecole Normale Supérieure de Lyon; Institut universitaire
de France, Lyon, France, francesco.bronzino@ens-lyon.fr; Paul Schmitt , California Polytechnic State University, San Luis
Obispo, CA, USA, prs@calpoly.edu; Nick Feamster, University of Chicago, Chicago, IL, USA, feamster@uchicago.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2834-5509/2025/12-ART45

https://doi.org/lOJ145/3768992

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

https://orcid.org/0000-0003-1652-8419
https://orcid.org/0000-0002-6170-2167
https://orcid.org/0009-0009-6480-9371
https://orcid.org/0000-0003-4447-960X
https://orcid.org/0000-0002-2156-5305
https://orcid.org/0000-0001-9315-5201
https://doi.org/10.1145/3768992
https://orcid.org/0000-0003-1652-8419
https://orcid.org/0000-0002-6170-2167
https://orcid.org/0009-0009-6480-9371
https://orcid.org/0000-0003-4447-960X
https://orcid.org/0000-0002-2156-5305
https://orcid.org/0000-0001-9315-5201
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3768992

45:2 Xi Jiang et al.

capacity and resource planning, or to detect malicious traffic and infer quality of experience (QoE),
and so forth [9, 17, 44, 45, 71, 77, 81, 84-86]. To support these tasks, traffic inference pipelines have
been developed to manage the complete inference process, starting from capturing traffic features,
preprocessing data, and applying trained models to make and deliver inference decisions in real-time.
However, despite advances in inference methods, widespread deployment of inference pipelines on
operational networks still face significant challenges, particularly in balancing trade-offs between
inference accuracy and pipelines’ computational efficiency, especially as traffic volumes increase.

As with any inference task, network traffic inference pipelines aim to maximize accuracy. How-
ever, in real-time environments, the need for timely decisions often imposes trade-offs in inference
accuracy to maintain efficient operation within various constraints. Operational constraints, such
as time-to-decision (TTD)—the total time from receiving the first packet to producing the final
inference result, drive the efficiency of the inference pipeline. Optimizing these constraints en-
hances processing efficiency, reduces operational costs, and improves throughput. While failing to
meet operational constraints does not always lead to pipeline failure, it can result in suboptimal
performance, manifesting as increased latency or reduced throughput. In contrast, system con-
straints impose strict resource limitations, such as memory and CPU capacity, that the pipeline must
adhere to for proper functionality. These constraints establish a performance floor that guides the
optimization of operational constraints. For example, a pipeline’s TTD (an operational constraint)
must be short enough to process incoming traffic faster than it arrives; or packets will be dropped
due to NIC buffer overflows (a system constraint). Effective management of both constraint types
is crucial for maintaining accuracy and efficiency in large-scale, real-time deployments.

Over the past two decades, network traffic inference has evolved from heuristic methods to more
sophisticated machine learning (ML)-based approaches. Early signature-based techniques [66, 78,
90], while efficient and able to conform to system constraints, relied on manually crafted, often
brittle, features that proved less accurate in complex, evolving networks [29]. To address their
limitations, two primary ML-based methodologies have emerged: Flow-statistics-based inference
pipelines (FSIPs) [12, 23, 31, 49, 54, 70] and packet-capture-based inference pipelines (PCIPs) [4, 18,
28, 62, 64, 76,79, 87, 95, 99, 103]. FSIPs utilize engineered summary statistics to maintain efficiency
and low resource demand, i.e., good conformance to operational and system constraints, but can
compromise accuracy due to simplified traffic representations. Conversely, PCIPs apply feature-
based machine learning models directly to raw packet data, significantly improving accuracy at
the cost of high computational overhead, which often violates operational and system constraints
(though these methods, while operating on detailed packet features, should not be confused with true
representation learning techniques, e.g., autoencoders or transformers, which automatically learn
latent, low-dimensional representations). This trade-off between accuracy and efficiency presents
challenges in large-scale, real-time network environments. Recent efforts, such as GGFAST [73],
have attempted to optimize PCIPs, but struggle to generalize across diverse traffic patterns and
system configurations, limiting their applicability in dynamic, real-world scenarios. As of today,
existing solutions struggle to effectively balance the trade-off between inference accuracy and
efficiency in real-time traffic inference pipelines.

In this paper, we address the challenge of designing a flexible and adaptive model-serving system
for traffic inference pipelines that balances inference accuracy and efficiency. To this end, we
introduce Just-in-Time Traffic Inference (JITI), a system that enables efficient and accurate traffic
inference in packet-capture-powered pipelines without being tied to a specific hardware platform,
system, or machine learning algorithm. JITI dynamically adapts to optimize operational constraints
while staying within imposed system constraints by leveraging a dual-stage approach:

Stage 1: Offline Training. Deviating from traditional fixed feature inference models, JITI trains
a pool of models that incorporate varied feature sets to suit different traffic rates and constraints.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:3

Its heuristic-based feature exploration algorithm applies approximation techniques to quickly
zero in on crucial features for a robust and efficient model set. For further adaptability, JITI also
incorporates an add-on feature for adaptive batch sizes over static sizes, designed to mitigate timing
uncertainties in inference model executions.

Stage 2: Online Adaptation. In real-time scenarios with fluctuating traffic rates and resource,
JITI deploys an adaptive scheduler to perform constraint-bounded model selection. This scheduler
leverages measured information to pick the most balanced trained model and batch size that
(1) satisfies current system constraints and traffic rate, and (2) provides the highest accuracy-to-
efficiency ratio, optimizing both accuracy and operational constraints.

We evaluate the effectiveness of our approach using application identification from network
traffic as an example inference task. Application identification is an important function in network
management for categorizing flows into corresponding applications that generated them, requiring
both accuracy and efficiency to enable real-time decision-making for operations such as traffic
prioritization and malicious traffic detection. Our results indicate that JITI remains optimal in both
accuracy and operational constraints under various traffic rates and system constraints for the task.
JITI consistently balances the trade-off between inference accuracy and efficiency by outperforming
conventional PCIPs by ~127x in terms of time-to-decision, i.e., operational constraints, while largely
preserving inference accuracy that is at least 18% higher than FSIPs. We also verify that JITI is able
to deliver efficient and accurate inference within system constraints such as system memory and
CPU capacity. To foster future research, we open-source JITI's implementation.!

Ethics. This work does not raise any ethical issues.

2 Motivation

In this section, we examine the motivation behind this work by analyzing the necessary trade-offs
between accuracy and constraints in a representative inference task: early application identification.
Network traffic inference tasks—such as anomaly detection, intrusion detection, and malware
classification—demand timely and accurate traffic flow classification. High accuracy is crucial to
prevent performance degradation and security risks. At the same time, inference pipelines must
comply with operational constraints, such as time-to-decision (TTD) for real-time decision-making,
and system constraints, such as memory limitations. However, our case study reveals that existing
state-of-the-art approaches fail to effectively balance accuracy and efficiency.

2.1 Existing Methods

We evaluate existing methods, i.e., inference pipelines, using only the first few packets per flow, as
prior work shows this suffices for ML tasks [12, 20, 40, 46, 60, 94]. Our analysis (Section 3.1) confirms
that additional packets offer minimal accuracy gains. A typical inference pipeline is composed of
several key stages in inference pipelines, including preliminary data collection operations, such
as capturing the traffic and dumping into pcaps, and more ML-oriented procedures, including
preprocessing (from extracting raw features from the captured traffic to converting these features
into a format suitable for models) as well as using trained models to perform inference on flows
with the processed features. We aim to evaluate the accuracy and efficiency of the ML components,
i.e., the latter stages of the pipelines.

Flow-statistics-based Inference Pipelines (FSIP). FSIPs, inspired by heuristic-based tech-
niques, infer traffic behavior using computed flow statistics such as throughput and inter-arrival
times (IAT). One of the first papers to propose early application identification, Bernaille et al. [12]
employs Gaussian Mixture Models (GMM) to cluster flows based on packet sizes (pkt_len) and IATs

!https://github.com/noise-1ab/JITI

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

https://github.com/noise-lab/JITI

45:4 Xi Jiang et al.

.
£ 100 T 02 ——
S FSIP (Avg. F1-Score = 0.391)
ki) —®= Bernaille06 (GMM) &
< PCIP (Avg. F1-Score = 0.941) 23 104
:% 50 { ~®= |singizwe21 (LightGBM) Eg
2)
] PCIP (Avg. FLSCOre =0.977) o o o—o—@ =
‘g ~®= Deep-Packet (CNN) ‘g- 100
E 0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Traffic rate (flows/second) Traffic rate (flows/second)
(a) Accuracy and TTD. (b) Memory usage.

Fig. 1. Inference pipeline performance with increasing traffic rates.

from the first four non-zero packets of a TCP connection. Conversely, more modern FSIPs, such
as SwiftIDS (LightGBM) [48], Lai20 (XGBoost) [53], and Flowrest (Random Forest) [6], leverage
advanced ML models and a broader set of flow statistics (e.g., duration, bytes, and packets, etc.)
collected from the first handful of packets of a flow. Other approaches, like GGFast [73], perform
more complex tasks to perform traffic classification. However, we exclude these pipelines from our
analysis, as they require up to 50 packets per flow, contradicting our goal of real-time, early traffic
identification.

Packet-capture-based Inference Pipelines. Recent ML-based traffic inference pipelines, partic-
ularly PCIPs, leverage raw packet captures (e.g., pcaps) for deeper traffic analysis, uncovering hidden
patterns that enhance inference accuracy. Prominent PCIPs include Isingizwe21 (LightGBM) [41],
IIsy (XGBoost) [101], and pForest (RF) [19], which use similar algorithms as FSIPs. Tree-based
models remain also popular for network traffic classification due to their strong accuracy and lower
training costs compared to deep learning approaches [7, 42]. There also exists CNN-based PCIPs,
such as Deep-Packet [62] where they extract the first 1,500 bytes of each packet and use a majority
vote across three packet-level inferences for final flow classification. We focus here on FSIPs and
PCIPs as representative baselines, while broader discussions of efficiency-oriented methods, adap-
tive inference serving, and in-network traffic analysis systems are deferred to Section 5, since they
provide contextual background rather than direct motivation.

2.2 Accuracy and Efficiency Trade-offs

We implement the presented approaches and evaluate their accuracy and efficiency tradeoffs. To
avoid bias from particular implementation choices, we standardize raw feature extraction using
nPrint[39] for packet captures and dpkt/scikit-learn[72] for flow statistics across all pipelines.
Similarly, we adopt standard ML libraries, including scikit-learn, MXNet[22], and PyTorch[69],
except for Deep-Packet, which requires its original sparse matrix preprocessor. This exception also
helps us confirm the preprocessing step as the efficiency bottleneck across diverse preprocessing
and model implementations. We evaluate the selected pipelines on a curated dataset of 20,000 flows
from ten major applications, splitting it into 10,000 flows for training (80/20 train/validation) and
10,000 for testing. The testing traffic rate varies from 10 to 7,000 flows/second, sampled randomly
from the test set. We analyze performance based on weighted F1-score, TTD, and in-use memory as
an example system constraint. Here, traffic rate refers to the number of flows processed per second.
For clarity, we report averaged results from the most balanced methods with minimum accuracy-
efficiency trade-offs as calculated via harmonic means. We present detailed dataset descriptions
and comparisons across all methods in Section 4.

Accuracy vs Operational Constraints. An operational constraint refers to metrics that gauge
the processing efficacy of the inference pipeline, where failing to optimize them results in suboptimal
efficiency rather than complete failure. An ideal inference pipeline aims to maximize accuracy while
optimizing these operational constraints to ensure timely and efficient operations. In this paper,
we focus on time-to-decision (TTD) as a key operational constraint. TTD measures the total time
from the start of preprocessing to the final inference decision. While minimizing TTD is critical for

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:5

real-time applications, failing to do so does not break the system, but it may lead to delays that
degrade the pipeline’s effectiveness for downstream tasks. Figure 1a shows that while the FSIP
Bernaille06 achieves lower accuracy, it significantly outperforms PCIPs in TTD, with DeepPacket
(CNN), a PCIP, taking 855x longer on average.

Key Observation @®. Accuracy and efficiency trade-offs are evident, with higher accuracy incur-
ring greater operational and system costs. For baseline pipelines, TTD grows roughly linearly with
traffic rate because the per-flow processing time is relatively fixed and, without adaptive batching,
flows are handled sequentially. As the arrival rate increases beyond the classifier’s capacity, flows
accumulate in the input queue, leading to proportional increases in TTD and, under persistent
congestion, eventual flow drops. In this experiment, however, we run for a finite duration and
assume unlimited memory, so the average TTD exhibits a linear growth with the input traffic
rate. The primary bottleneck in PCIPs is feature preprocessing, which accounts for over 99% of
Isingizwe21’s (LightGBM) TTD. In a 3,500-flow inference, only ~5% of TTD is spent on feature
extraction and encoding, while 95% is dedicated to data aggregation (vector padding and batch
merging). Feature preprocessing also drives system resource bottlenecks, such as memory overhead.
PCIPs, requiring over 3,000 features from the first three packets per flow, contrast sharply with
FSIPs, which use fewer than 10 features.

Accuracy vs System Constraints. A system constraint refers to resource limitations that an
inference pipeline must strictly adhere to, as violations can cause failures or crashes. An ideal
pipeline maximizes accuracy while staying within these constraints. We use in-use memory as an
example, given its relevance across networked environments. Small to mid-sized devices, such as
routers, operate within a few gigabytes of memory, while even large ISPs and data centers face
challenges scaling to handle thousands of flows per second [10, 26, 35, 98]. This underscores the
universal impact of system constraints, irrespective of infrastructure size. While PCIPs achieve
higher accuracy (F1-Score of 0.959 on average), they demand significantly more memory than FSIPs.
Figure 1b shows that PCIPs (Isingizwe21 and Deep-Packet) consume 38X and 163X more memory,
respectively, compared to the FSIP Bernaille06. Our system, while demonstrated using memory,
applies to other constraints as discussed in Sections 3.3 and 4.4.

Key Observation @. More accurate models demand higher computational complexity, signifi-
cantly increasing resource consumption and potentially causing resource exhaustion in constrained
environments. As traffic rates increase, operational and system costs scale accordingly. Despite
modern server capabilities, adherence to these constraints remains critical, as illustrated by baseline
pipelines in the figures. Managing these trade-offs is essential for scalable, real-time traffic inference.

In this paper, we explore and balance these trade-offs by introducing a traffic inference system
that retains the high accuracy of PCIPs while achieving better efficiency, approaching that of FSIPs.

2.3 Deployment Scenario and System Constraints.

We ground our work in the context of high-load access networks, such as large campus networks,
which are representative of environments studied in prior work like FastFlow [8] and Traffic
Refinery [15]. These access networks carry substantial bandwidth (e.g., a 40 Gbps link in Traffic
Refinery) but are particularly challenging because they exhibit peak new flow arrival rates of
approximately 15,000 flows per second. We adopt this scale in our evaluation in Section 4, as it is
corroborated by real-world backbone traffic statistics from the CAIDA Chicago monitor [1, 35],
which report similar average rates. This workload setting places our design in the operational
realities of production-scale access networks. In addition, we assume that these inference pipelines
operate in environments with fixed, provisioned resources, i.e., CPU and memory are not elastic. The
operational challenge is therefore not about scaling out additional resources, but about dynamically
adapting to varying traffic loads under static system capacities. This assumption emphasizes

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:6 Xi Jiang et al.

Running
List of Network baZ::r;:ng Optimal Feature '":;’;’e Pool of Inference | _pipelines at Acgf\:‘ r:ig ; nd Information_ | Adaptive
Features exploration Combinations training Models/Pipelines varyisr;g;;atcn Measurements fetching Scheduler

1 1
 (Section 3.1) J (Section 3.2) J (Section 3.3)
Stage 1: Offine feature combination and Stage 2: Offline accuracy and efficiency Stage 3: Online adaptive scheduling of
inference model generation measurement inference model and batch size

(2) Batch size

Fig. 2. Just-in-Time Traffic Inference (JITI) system overview.

the importance of balancing inference accuracy with efficiency while respecting strict system
constraints, and it provides the core motivation for our adaptive approach.

3 Just-in-Time Traffic Inference

Our findings show the need for balancing accuracy and efficiency under variable system constraints

is crucial to maintaining performance. We introduce Just-in-Time Traffic Inference (JITI), a system

that maintains a curated pool of trained models with different feature specifications, allowing

inference pipelines to swap models based on resource availability and traffic conditions. Additionally,

JITI supports dynamic batch sizes, providing further adaptability to fluctuating traffic loads and

constraints. As Figure 2 shows, the system design integrates a three-stage pipeline:

(1) Offline Bootstrapping: A heuristic feature exploration algorithm approximates balanced feature
combinations, generating a pool of inference models with varying feature sets (Section 3.1).

(2) Offline Profiling: Models are assessed for accuracy and efficiency at different batch sizes for the
target system (Section 3.2).

(3) Online Inference: An online adaptive scheduler monitors traffic rates and system constraints,
dynamically selecting the optimal batch size and inference model/features to serve (Section 3.3).

3.1 Heuristics-based Feature Exploration and Inference Model Generation

The accuracy and efficiency of network traffic inference pipelines stems as much from the chosen
inference model as from the input features. First, JITI identifies optimal feature subsets from a large
candidate pool to generate a set of inference models with different accuracy-efficiency profiles.

Preliminary Feature Abstraction and Selection. Building a pool of models requires first
choosing the set of candidate features to explore. These features are typically derived from domain
expertise or determined by the capabilities of the traffic collection tool. In this implementation
of JITI, we use nPrint [39] to encode raw packet captures into standardized bit-level features,
leveraging its flexible feature subscription interface. In nPrint, each packet is normalized into
a binary format that preserves its semantics through one-hot-encoding of header field values,
providing an effective baseline for feature exploration. Yet, future implementations can replace
nPrint with alternative encoders without affecting JITI’s functionality. Encoding packet captures
at the bit level significantly expands the feature space (i.e., every bit in the first few packets
represents a single feature), complicating efficient feature exploration. Standard ML-ready bit-
level representations can exceed 1,000 features per packet (e.g., UDP header bits are recorded
even for TCP packets). To address this, we apply network domain knowledge, grouping bit-level
features within the same semantic category (i.e., identical header fields) into a single feature for
selection. However, bit-level granularity is preserved for preprocessing, training, and inference.
This abstraction reduces the feature space to 37 key features, including header fields and packet
payloads as shown in Table 1.

We exclude from candidate features the packet payload, as its TLS encryption introduces noise
that hampers inference. Similarly, we exclude features prone to overfitting, such as IP addresses
and ports, due to their specificity to local networks and reduced generalizability. We focus on
header fields from the first three packets of each flow. Initial packet headers capture critical details
such as protocol type, session initialization, and metadata, and they provide sufficient accuracy

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:7

according to our tests and the literature. For instance, increasing to 10 packets per flow in Isingizwe21
(LightGBM) [41] improves the F1-score by less than 0.4% while tripling the feature space. For flows
with fewer than three packets, we pad missing bit-level features with —1. This selection results in
32 abstracted features for feature exploration and inference model generation as shown in Table 1.

Limitations and Alternatives to nPrint. Our choice of nPrint prioritizes maximizing accuracy
from packet headers, but it introduces two considerations. The first is the potential negative impact
that nPrint’s fine-grained traffic feature representation can have on computational overhead, online
profiling efficiency and TTD during online feature extraction. Lighter-weight alternatives, such
as packet series—sequences of packet sizes, directions, and inter-arrival times—offer compact
representations that can be advantageous in resource-constrained scenarios or for tasks where
timing features are critical. In cases where packet-series features are preferable or better suited to
the task, JITI can be applied to pipelines based on packet series as well. Another consideration is
the risk of involving features that may lead to overfitting, since nPrint exposes a wide range of
header fields and some (e.g., checksums, TCP seq ack numbers) can act as shortcuts. However,
users can decide which fields to include, so this is a risk to manage rather than a built-in limitation.
In our study, we include them because our dataset spans multiple vantage points and a mix of
services and operating systems, mitigating the risk of overfitting.

JITI is Representation-Agnostic. Regardless of the feature representation chosen or whether
potential overfitting features are included or discarded, the JITI framework can operate seamlessly.
Its core lies in the adaptive scheduling system, which selects models using pre-computed perfor-
mance metadata—accuracy, TTD, and resource costs—without relying on raw traffic features. Offline
profiling measures these metrics across candidate models, and the online scheduler selects the
optimal model for the current context. Because this process relies solely on performance metadata,
it can accommodate any feature type or granularity, including nPrint, packet series, or hybrid
representations. This decoupling allows JITI to systematically select feature subsets from any
representation. In this way, JITI provides a flexible framework that allows practitioners to tailor
feature selection and model deployment to the specific requirements of their environment or task.

Heuristic-Based Feature Exploration. After selecting candidate features, JITI identifies opti-
mal feature combinations to maximize (1) accuracy-to-operational-cost and (2) accuracy-to-resource-
utilization ratios. A high accuracy-to-operational-cost ratio ensures efficiency (e.g., minimizing
TTD), while a high accuracy-to-resource-utilization ratio enables operation within strict resource
limits (e.g., memory or CPU capacity). A naive approach to obtain these combinations would
consist in exploring all possible feature combinations and select the top feature subsets that yield
the highest ratios. However, this proves impractical, requiring the training and evaluation of
2 (%) = 2% -1 ~ 4.29 x 10° models in our implementation. While non-exhaustive search
methods exist, such as hill climbing [2, 34, 38, 83], they reduce search complexity but still require
training and evaluating multiple intermediate models, often converging to suboptimal solutions
due to local optima. For example, in our experiments, hill climbing yields F1-Scores 0.0834 and
0.0871 lower than XGBoost’s and RF’s global optima, respectively. Our experiments show that hill
climbing frequently under-performs across all models, particularly for smaller feature sets.

We address this challenge by leveraging two key observations. First, there is a strong correlation
(coefficient = 0.753) between permutation-based feature importance and the marginal accuracy
gain observed when adding each feature to a model trained with all 32 features. This suggests
that higher-importance features have a more direct and predictable impact on model accuracy.
Second, feature size significantly affects efficiency, with a near-perfect correlation (coefficient = 0.99)
between the total number of bits in a feature subset and the resulting overhead in both operational
and system constraints. Larger feature sets increase resource consumption and reduce processing

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:8 Xi Jiang et al.

Header | Field | Prelim. Sel. | Heur. Sel. | Header | Field | Prelim. Sel. | Heur. Sel. |

ipva ver v - tep sport - -

ipva | ihl v - tep dport | - -

ipvd s v v tep s v/ v Header | Field | Bits FI | FIBits || Header | Field | Bits FI | FIBits
:Pz: ;3'79" j f :ﬁp Zfﬂ" j j ipvd | dfbit 10.048111 | 0.048111 tep | cksum | 16 | 0.007000 | 0.000438
» y 0 o tcp fin | 10017778 | 0017778 ipvd t] 8 0.003444 | 0.000431
ipvd | frag off | v - tep res v - _

vi |ul v v top flagsins | v - ipvd w| 8 0.121000 | 0.015125 tep | opt| 320 0.107000 | 0.000334
ipva proto | v v tep flags: cwr | v/ - tep | doff 4] 0032667 | 0.008167 udp | cksum | 16 | 0.005222 | 0.000326
ipv4 | cksum | v/ v tep flags: ece | v - tep | ackf| 1] 0.008111 | 0.008111 ipvd | tos | 8 0.002333 | 0.000292
ipvd | sip - - tep flags: urg | / - tep | wsize | 16 | 0.028556 | 0.001785 ipvd | proto | 8 | 0.002222 | 0.000278
ipv4 dip - - tep flags: ack | v/ v tep psh 1] 0.001333 | 0.001333 tcp rst 1] 0.000111 [0.000111
ipvd 3?1: j Y tep g‘*gs'l’“‘ j j ipv4 | cksum | 16 | 0.009889 | 0.000618 top | seq| 32 0.001444 | 0.000045
ipvd it tep ags: rst udp | len| 16| 0.007778 | 0.000486 tep | ackn | 32 | 0.000333 | 0.000010
ipv4 mfbit v - tep flags: syn | v/ -

ipvd bt/ - top | flagsifin | v/ 4 Table 2. Summary of the remaining features after
up | len v v tep wsize |V v

udp | cksum |/ v tep | up v - heuristics-based feature selection for pool of inference
tep payload | — - tep opt v v

fp | cksum |/ v model generation.

Table 1. Abstracted header-level features after pre-
liminary and heuristic selection.

efficiency. However, by carefully balancing feature importance and size, we can effectively mitigate
these efficiency trade-offs.
Given these observations, we ap-

K Train a model_using ’ Compute FI; and Bits; for H Rank by Fjli B ‘
proximate the expected accuracy and 2l 32 Hoador-Lovel > sach feature i. Bits,
efficiency trade-offs by optimizing For each size' in sizes',

identify combinations T .
the ratio of aggregated feature impor- roming 3 2 zen(ji; sp)oil’nsffn;mbm
tance to feature size. This enables us ratios. |
to frame the feature selection process Fig. 3. Heuristic-based feature exploration.

as a constrained optimization problem: maxscr Y ;cs %, s.t.|S| < n, where F is the full feature
set, S is a selected subset, FI; represents the permutation feature importance of feature i, and Bits;
denotes its corresponding bit size. To efficiently approximate the solution, we implement a heuristic-
based algorithm (Figure 3) that ranks features by trade-off severity, constrains the search space, and
selects efficient feature subsets. First, we compute the ratio Bf—f’sl for each feature and rank them
in descending order, prioritizing those that maximize accuracy while minimizing operational and
resource costs. This greedy ranking criterion reduces the search space, ensuring bounded complexity
over exponentially growing exhaustive search. Next, we control the pool size using two parameters:
sizes (permissible feature set sizes) and numcompos (distinct subsets per size). Given numcompos = k
and sizes = {s1,52, ..., Sm }, the total number of models is pool_size = k - m. This formulation ef-
ficiently samples the feature space, avoiding exhaustive evaluation on all possible subsets and
requiring only a single model training, unlike hill climbing, which demands multiple intermediate
trainings (e.g., 45 model compilations for a 9-feature set), significantly reducing overhead. Finally,
for each s € sizes, we iteratively select the top numcompos subsets of size s that maximize the sum
of % This ensures an adaptive balance between accuracy and efficiency under different system
constraints. By leveraging strong correlations in feature importance and size, our selected subsets
consistently yield models with F1-Scores exceeding 0.90, outperforming the often inconsistent hill
climbing approach. Simultaneously, this guarantees a balanced feature subset selection, ensuring that
selected models achieve high accuracy without excessive resource consumption. Table 2 provides a
summary of the remaining features after heuristics-based selection.

Inference Model Generation. JITI utilizes the computed feature subsets to generate the
inference models to pass to the next step in the pipeline. Our approach focuses solely on feature
selection rather than model architecture. Thus, the choice of ML algorithm is secondary to its
effectiveness. To ensure comprehensive evaluation, we implement three ML algorithms—LightGBM,
XGBoost, and Random Forest (RF)—allowing direct comparison with baseline pipelines.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:9

Algorithm 1 Adaptive Scheduler

Input: traffic rate, resource availability; Data: accuracy and efficiency measurements

1: candidates — 0 > Initialize an empty list
2: for each combination in Da]taTgo Be)
N; (B, R, TTDC) « [=555, 1

4 RES; (N;,RESc) « N; - RES¢ > Combination system resource requirement
5 if RES; (N;, RESc) < System resource availability then

6: candidates.append(combination)
7
8

> Maximum concurrency

: if len(candidates) # 0 then

opt_combination (Kop;) < candidates[0]
9. Fl—Score(Kgpt)
: opt_score «— TTDC (ropt Br)
10: for each candidate(k) in candidates[1 :| do
F1-Score(x)

11: current_score « TTDC(xBy)
12: if current_score > opt_score then
13: Kopt < K > Update most balanced combination

14: return opt_combination

3.2 Accuracy and Efficiency Measurements at Varying Batch Sizes

After generating the inference models, JITI profiles the models and determines their accuracy and
efficiency at different batch sizes and number of classifier instances on the target system.

Adaptive Batch Size. Batch size, defined as the number of traffic flows captured before initiating
an inference pipeline instance and serves as a key hyperparameter for optimizing efficiency. While
prior work [27, 58, 102] has optimized batch size to minimize model execution time, existing
approaches do not dynamically adjust batch size to balance operational and system constraints.
However, simply linearly increasing batch size proportionally to traffic rate can lead to excessive
overheads at high traffic volumes. In contrast, an adaptive approach that dynamically adjusts batch
size based on real-time traffic conditions, forecasting fluctuations and processing traffic without
waiting for a complete second, thereby reducing operational constraints.

Number of Inference Instances. While increasing batch size can improve system throughput,
it is not an effective strategy for reducing time-to-decision. Although larger batches decrease
per-inference processing time, the overall TTD remains limited by the time needed to collect all
inputs before inference begins. However, if sufficient system resources (e.g., memory, CPU) are
available, leveraging multi-core architectures and running multiple inference instances in parallel
can overcome this bottleneck. By distributing inference across multiple pipeline instances, the
system can process inputs concurrently, significantly reducing TTD and improving efficiency.

Profiling of System Resource Requirements. Given inference models, maximum batch sizes
and number of parallel instances, JITI collects offline measurements to build a accuracy-efficiency
map for available models. These measurements inform the adaptive scheduler (presented in the
next section), which selects the optimal batch size and model configuration. For any batch size
B and inference pipeline C, we define: (1) End-to-end processing time: TTD¢(B); and (2) the
resource requirement for a classifier instance: RES¢(B). Additionally, we take into consideration
that multiple inference instances may run in parallel if the pipeline’s TTD exceeds the batch fill-up
time and sufficient system resources (e.g., memory, CPU) are available. In this case, the total resource
requirement is the aggregate needed to sustain concurrent execution without failure or delay. Thus,
given batch size B; and traffic rate R; at time T;, the maximum number of concurrently running

instances of C is N;(B;,R;, TTD¢) = [%ﬁ’)

RES;(N;, RESc) = N; - RESc. For any inference pipeline instance with a trained model and fixed
batch size, its resource demand can be computed accordingly. For example, in our evaluation of
FSIPs and PCIPs, where batch size is set equal to traffic rate (B; = R;), the total system resource
requirement simplifies to [TTD¢(B; = R;)] - RESc(B;).

w. The total system resource requirement is then

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:10 Xi Jiang et al.

3.3 Adaptive Scheduler

Given the pool of inference models (each with different feature sets) and their corresponding
efficiency and accuracy measurements, we introduce an adaptive scheduler that continuously
monitors traffic rate and resource availability to dynamically select the model and batch size that
optimize the trade-off between accuracy and efficiency.

Selection Objective. For a given traffic rate R;, the scheduler seeks to determine the optimal
combination of inference model C and batch size B that maximizes accuracy while minimizing
operational constraints. Formally, this can be expressed as (C*, B*) = argmax g %Cg)) subject to
system resource constraints (RES; (N;, RES¢c) < RES;4x), where ACCc(B) represenfs the accuracy
of model C at batch size B, OC¢(B) is the operational cost, and RES;(N;, RESc) denotes the total
system resource requirement. The scheduler employs an iterative optimization approach, evaluating
accuracy-efficiency trade-offs across the available configurations to select the optimal combination.

Minimum F1-Score Requirement (z). The scheduler prioritizes maximizing the accuracy-to-
operational-cost ratio but does not inherently enforce a minimum accuracy threshold. In real-world
deployments, a minimum acceptable F1-Score (MFR) may be required. To accommodate this,

we introduce a tunable parameter p, ensuring that only model-batch combinations satisfying
ACCc(B)

ACCc(B) = p are considered: (C*, B*) = argmax ¢ OCeB)

ACCC(B)2p
the scheduler selects the configuration with the highest achievable accuracy. The default p = 0

implies no MFR, and the accuracy metric can be replaced with alternative evaluation criteria
in future implementations. Algorithm 1 outlines the scheduler’s operation after enforcing the
MFR. Given system constraints, the scheduler evaluates resource requirements at the current
traffic rate and eliminates infeasible configurations. For instance, if memory availability is 5 GB
and traffic rate is 1,500 flows/sec, a combination with TTD = 1.2s, batch size = 500, and unit

. If no combination meets p,

memory requirement = 2 GB is discarded, as its total memory demand ([ﬁ] X 2 = 7.2 GB)

exceeds availability. After filtering, the scheduler iteratively selects the configuration maximizing
the accuracy-to-operational-cost ratio. The chosen inference model and batch size dictate traffic
inference, dynamically adapting as traffic rates and resource availability fluctuate. Designed for
practical deployment, our implementation of the scheduler operates efficiently within 37 MB of
memory and makes decisions in under 10 milliseconds. Since it processes only precomputed tabular
data, increasing the model pool size has minimal execution overhead.

4 Evaluation

We evaluate the performance of JITI against state-of-the-art inference pipelines. We focus on the
early application identification task previously introduced, and perform flow-level application
identification on a network traffic flow dataset. Our experiments show that, under both resource-
rich and resource-scarce environments, JITI balances accuracy and efficiency, achieving better
inference results than FSIPs while maintaining better operational constraints, i.e., lower TTD, than
conventional PCIPs. Further, we explore the robustness of the system by profiling its behavior
under varying traffic rates and system constraints, using memory and CPU availability as examples.

4.1 Evaluation Setup

Prototype, Baselines, and Experimental Setup. We implement JITI’s prototype, as well as all
baselines introduced in Section 2 for comparison. We implement raw feature extraction using
nPrint [39] for packet captures and dpkt/scikit-learn [72] for flow statistics. We adopt standard
ML libraries, including scikit-learn, MXNet [22], and PyTorch [69], except for Deep-Packet, which
requires its original sparse matrix preprocessor. Finally, we conduct all experiments on a machine

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:11

Macro Ser- Total Application La- Collection Type Method F1 TTD (s)
vices Flows bels (Flows) Date
- - Bernaille06 [12] 0.39 0.04

Yldeo Stream- 9465 Netflix (4104), 2018-06-01 ESIPs Lai20 [53] 0.72 1.08

ing [16] YouTube (2702), Flowrest [6] 0.72 0.63
Amazon (1509), SwiftIDS [48] 0.67 0.06
Twitch (1150)

Video Confer- 6511 MS Teams (3886), 2020-05-05 JITI(XGB) 0.85 1.66

encing [65] Google Meet JITI(RF) 0.86 0.49
(1313), Zoom JITI(LGB) 0.86 0.24
(1312) PCIPs IIsy [101] 0.95 95.13

Social Media 3610 Facebook (1477), 2022-02-08 pForest [19] 0.94 96.33
Twitter (1260), In- Isingizwe21 [41] 0.94 96.10
stagram (873) Deep-Packet [62] 0.98 30.50

Table 3. Summary of the network traffic flow dataset: ~ Table 4. Evaluation: JITI achieves best tradeoff in F1
10 applications across three macro service types. and TTD.

running Ubuntu 20.04.4 LTS, Linux 5.4.0-135-generic kernel, and x86-64 architecture. It features an
AMD EPYC 7502P 32-Core Processor with 64 threads, operating at 1.49GHz base and 2.5GHz boost
clock speeds. All inference pipelines in this study default to distributing workloads across available
cores for parallel computing.

Operational and System Resource Constraints. To replicate real-world requirements, we
enforce both operational and system resource constraints. As an operational constraint, we focus
on time-to-decision (TTD), which measures the responsiveness of the inference pipeline. Minimizing
TTD is crucial for real-time systems, where processing delays can lead to suboptimal results.
However, exceeding the TTD threshold does not necessarily cause system failure. For system
resource constraints, we consider two key factors. First, memory requirements serve as a primary
example. Memory optimization is particularly important in traffic inference, where real-time systems
process large data volumes. This includes memory used during inference, including intermediate
storage for preprocessing (including raw feature extraction and transformation into ML-compatible
formats), model loading, and inference. We measure memory usage (including both RAM and swap
space) using Linux cgroup controls and ensure stable pipeline operation without excessive TTD or
premature termination. For concurrent instances, we compute the total memory requirement, as
discussed in Section 3.2. Second, we demonstrate that JITI can readily accommodate additional
constraint metrics by profiling its behavior under varying CPU capacity constraints.

Dataset. We evaluate using a curated dataset (Table 3) comprising pcap files collected over
multiple dates, covering traffic flows from ten applications across video streaming [16], video
conferencing [65], and social media. These traces are widely used for networking tasks such as
latency analysis, QoE inference, and application identification. To preprocess the dataset, we: (1)
Extract DNS queries to identify application-related IP addresses. (2) Filter traffic to retain only
packets associated with these IPs. (3) Segment traffic into individual flows based on the 5-tuple
attributes (source/destination IPs and ports, transport protocol). Each flow is labeled with its
respective application (e.g., Netflix, Zoom) for inference accuracy evaluation. Since all traffic is
TLS-encrypted, we aggregate flows into a unified dataset for benchmarking JITI and baseline
pipelines.?

4.2 Accuracy in Unconstrained Environments

We first evaluate JITI’s accuracy and efficiency in resource-rich settings, performing application
identification on traffic flows ranging from 100 to 15,000 flows/second, following the deployment
scenario described in Section 2.3. To emulate different traffic rates, we randomly sample and
aggregate flows from the test set. We compare JITI’s accuracy against both the FSIPs and PCIPs

2All traces used in this paper are sanitized and contain no personally identifiable information (PII).

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:12 Xi Jiang et al.

_ FSIPs
2] Bernaille06 (GMM)
§ 10000 s SWftIDS (LightGBM)
o Flowrest (RF)
§ * with 100% throughput
g ~O= Lai20 (XGBoost)
) = .02 B _
< 10004 JITI (4=0.85 and u=0) E 10% 4 mmm JITI (LfghtGBM,u:O)
3 LightGBM : = JITI (LightGBM, u = 0.85)
< RF 3 FSIP
3 * with 100% throughput § 101y ™™ Bemnaille06 (GMM)
= XGBoost e PCIP
£ 100 g Isingizwe21 (LightGBM)
w PCIPs < PCIP
5] °] m
S ~O— Deep-Packet (CNN) g Deep-Packet (CNN)
3 —~)— Isingizwe21 (LightGBM) H
£ —7— llsy (XGBoost) =
A T T T T T T == pForest (RF:
0 2500 5000 7500 10000 12500 15000 L (RF) 0 1000 2000 3000 4000 5000 6000 7000
Traffic rate (flows/second) Traffic rate (flows/second)

(a) Without memory constraint: JITI (LightGBM, RF) (b) Memory requirement comparison of JITI vs.
matches upper-bound throughput, surpassing conven- conventional inference pipelines across 500-7000
tional PCIPs. flows/sec.

Fig. 4. Throughput and memory usage comparison of JITI against baselines under increasing traffic rates.

detailed in Section 2. We consider feature set sizes ranging from one to nine, with 10 combinations
per size—yielding a pool of 90 inference models. The feature set size is capped at nine, as additional
features introduce high overhead with diminishing accuracy gains. With finer-grained abstraction,
this limit can be adjusted. Example inference models from this pool are in Appendix A, Table 5.
JITI Outperforms PCIPs in TTD. Table 4 shows that all JITI implementations significantly
reduce TTD compared to PCIPs, approaching FSIP levels. The fastest JITI implementation (Light-
GBM) achieves a TTD of 0.24s, over 2X faster than Deep-Packet (CNN), the fastest PCIP. To interpret

TTD in a network-centric way, we express it as inference throughput—the number of flows an

inference pipeline processes per second post-capture. Throughput is derived as %,

lower TTD increases throughput. For instance, if 7,000 flows are captured per second with a TTD
of 1.4s, inference throughput is 5,000 flows/s, covering 71.4% of the traffic rate. Figure 4a shows that
JITI (LightGBM, RF) matches the FSIP throughput upper bound and outperforms PCIPs by nearly
50x at 15,000 flows/s. With p set at 0.85 and 0, JITI maintains high throughput by dynamically
selecting models with optimal accuracy-to-operational-cost ratios and running as many instances
of the chosen inference pipeline (with the selected inference model) as required since no memory
constraint is enforced. This allows JITI to scale with traffic demand, sustaining near-maximal
throughput when resources permit. Although the inference throughput (i.e., the number of flows
preprocessed and predicted within a second post data collection) may reach 100%, the actual TTD
may be less than one second. As Table 4 indicates, there are cases where our system implementation
meets the upper bound throughput but has a higher average TTD than the FSIPs. We carry out
analysis on TTD variations in Section 4.4. Despite this, all JITT implementations still surpass all
evaluated PCIPs with considerably lower average TTDs. In some cases, XGBoost-based inference
models/pipelines, including the JITI implementation, show reduced throughput, i.e., higher average
TTD, than those using other algorithms. This agrees with past work [13, 21, 50, 74], suggesting that
XGBoost models tend to exhibit slower inference speeds given high traffic volume and complexity.

JITI Achieves Higher Accuracy Than the FSIPs. We evaluate JITI’s inference accuracy
against existing pipelines. As expected, PCIPs generally achieve higher F1-Scores than FSIPs,
with Bernaille06 (GMM) performing the worst at 0.39. With p set to 0.85, the most accurate JITI
implementation (LightGBM) achieves an average F1-Score of 0.86—just 0.12 below Deep-Packet
(CNN), the best-performing PCIP (Table 4). All JITI variants outperform the best FSIP by at least
18%, and even with p = 0, JITI maintains a strong average F1-Score of 0.82—13.9% higher than the
FSIP baseline.

where

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference

| == ym

F1-Score

JITI Accuracy = p

0.‘88
MFR ()

0.86

D (seconds)
o o
> o

o
N

45:13

r —e— |ITI

0.84

0.86

0.88 0.90 0.92 0.94

MFR (1)

(a) JITI improves accuracy as MFR () increases, until (b) Higher MFR (i) triggers selection of more complex
no model in the pool can satisfy the requirement. models from the pool, increasing TTD.
Fig. 5. JITI’s performance sensitivity to changes in MFR.

To understand how JITI adapts under varying accuracy demands, we conduct a detailed sensitivity
analysis of the minimum F1-score requirement (MFR,), with results shown in Figures 5a and 5b.
We incrementally varied p from 0.80 to 0.95 (in 0.005 steps) under a traffic rate of 15,000 flows/second
and no memory constraints. As illustrated in Figure 5a, increasing y prompts the adaptive scheduler
to select the most accurate model from the pool that satisfies the current threshold while minimizing
computational cost. In our experiments, JITI is able to meet accuracy requirements up to an F1-
Score of 0.91, beyond which no available model satisfies the target. In such cases, the scheduler
defaults to the most accurate model in the pool. This limitation can be alleviated by increasing the
poolsize to include models with richer feature sets. Figure 5b further demonstrates that higher p
values inevitably lead to increased TTD, as the system selects more complex models with higher
feature-processing overhead. Finally, we compare JITI to fixed-feature LightGBM-based PCIPs in
Appendix A.1, showing that JITI consistently achieves a superior balance between accuracy and
efficiency through its adaptive model selection and scheduling. These results highlight that, absent
system constraints, JITI outperforms PCIPs in TTD/throughput, i.e., operational constraint, and
FSIPs in inference accuracy.

4.3 Suitability for Resource-Constrained Environments

Our results show that in unconstrained settings, the fastest JITI implementations achieve low TTD
(100% throughput) and high accuracy across all evaluated traffic rates. We now assess whether JITI
maintains this balance under limited system resources, using memory as the primary constraint.
The evaluation ranges from 500 to 7,000 flows/second and we test JITI both with and without
setting an explicit minimum F1-Score requirement.

JITI Requires Significantly Less Memory Than PCIPs. Figure 6 shows that JITI consistently
requires far less memory than PCIPs across all traffic rates, reducing the risk of memory exhaustion.
The most efficient implementations (LightGBM, RF) even use less memory than Bernaille06 (GMM),
an FSIP. Compared to SwiftIDS (LightGBM), the least memory-intensive FSIP, JITI requires only 1.7x
more memory at 7,000 flows/s, while the most efficient PCIP (Isingizwe21) demands 974x more. JITI's
efficiency stems from its heuristic-based inference model generation, which optimizes operational
cost and resource use. The scheduler selects models that minimize memory consumption, making
JITT highly suitable for memory-constrained deployments. Fine-grained memory comparisons of
example pipelines are in Figure 4b.

Imposing a Minimum F1-Score Requirement Increases Memory Requirements. Allowing
JITI to operate without a minimum F1-Score requirement (¢) minimizes memory usage but results
in lower accuracy (F1-Score = 0.82). Setting p = 0.85 increases memory demand to sustain high
throughput (Figure 6), as more accurate models require additional features, increasing memory
consumption during preprocessing and inference. However, JITI's memory use remains comparable
to FSIPs and far lower than PCIPs. At 7,000 flows/s, a LightGBM-based JITI implementation with
p = 0.85 still requires ~120x less memory than PCIPs.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:14 Xi Jiang et al.

, 500 flows/second 7000 flows/second
’ 1 R 1y T
@ (GBM)(XG{?) (RF) (CNN)
@ 126.8126.9127.1134.4
o) 102
2 0 Isingi-
> 2we21 lisy pFores!
oo (GBM)(XGB) (RF)
£€ 246 2.45 2.66 10!
g £ 10° GBM 109 1 Benaille0
5 E BemaillsDG_ 1.06 }53 P23 E(E?A‘Me)
g Ly 0 GRE s
= (GBM)(XGB) 0.22 (GBM)(XGB) 023
) 912 o8 101 // 913 ols
10~ -
Jim Jim FSIPs PCIPs I Jm FSIPs PCIPs
(u=0) (u=0.85) (u=0) (u=0.85)
Fig. 6. JITI requires less memory than PCIPs at both low and high traffic rates
~ 10 100
] Memory Usage - 9
) s H/‘:\.dn'ﬂﬁwf P £ 80
> . =
1.0 - o 2 60 CPU Utilization
v V-MW“ g4 6 g = CPU Capacity
0 2 5 409
A Better g 4 > a0l
L 0.8 = 5 ©
5 Fsip A R
; s
o7 WP L Bemaieos (GMM)
> @ Flowrest (RF) - 6000 = JITI (= 0.85) | & 7000 — i
© 0.6 H —Jim H
3 Jim 2 ! 2]
g ITI (LightGBM, = 0.85) o 4000 g o
< 051 J 9 L 42D & 8
i >
.. " PCIPs -5 2000 £ 50001
0.4 m Deep-Packet (CNN) g g
rE v IISY (XGBoost) o 40007
N N T . . 2 4 6 8 10 70 80 90 100
1072 107! 10° 10! 102 N " "
Time-to-decision (seconds) Memory availability (GB) Available CPU Capacity (%)
(a) At 100% throughput, JITI balances trade-offs (b) JITI behaviors under fixed traffic rate and vary-
better than FPIPs and PCIPs across traffic rates. ing system resources.

Fig. 7. Evaluation of JITI’s trade-off handling and behavioral adaptability.

JITI Balances Accuracy and Efficiency with 100% Throughput. We further assess JITI's
ability to balance accuracy and efficiency under memory constraints, evaluating F1-Score and TTD

at traffic rates up to 15,000 flows/s. Focusing on the LightGBM-based JITI with y = 0.85, we find

it achieves the best trade-off between inference throughput (tmefT#) and accuracy. Using the

same selection methodology, we compare JITI to Flowrest (RF) and IIsy (XGBoost) as representative
FSIP and PCIP baselines, along with Bernaille06 (GMM) and Deep-Packet (CNN). As Figure 7a shows,
JITI consistently maintains high F1-Scores and low TTD (high throughput), unlike baselines that
trade off one metric for another. By dynamically selecting inference models and batch sizes, JITI
optimizes for both accuracy and efficiency without compromising either.

4.4 Behaviors Under Varying System Constraints and Traffic Rates

Finally, we evaluate JITI behaviors under changing memory constraints and traffic rates to reflect
realistic deployment where traffic rates (and hence memory demands) change during the course of
a day. To simplify presentation, we use the JITI implementation with LightGBM for subsequent
analysis. Observed behaviors generalize across JITI implementations as the choice of ML algorithms
doesn’t significantly affect its accuracy and efficiency, as shown in Table 4.

JITI Adjustments Facing Varying Memory Availability. To assess the influence of memory
accessibility on JITI’s behavior, we conduct experiments at a fixed traffic rate of 15,000 flows/second
while gradually increasing the memory available to JITL The selection of the traffic rate is arbitrary
as the goal of this experimental setup is for us to isolate and discern the relationship between
memory availability and the system’s behavior. In all subsequent results, the inference throughput
maintains a consistent 100% of the incoming traffic rate. Experiments are conducted with MFR (p)
set to 0 and 0.85 in F1-Score.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:15

As shown in Figure 7b, regardless of whether the MFR is set, JITI exhibits gradual increases in
memory utilization and reductions in batch size as the system memory availability increases. This
is in line with the scheduler’s objective to maximize the accuracy-to-operational-cost ratio because
reducing the batch size and choosing inference models with smaller feature sets can both lead to
a decrease in TTD. However, this behavior results in an increase in memory usage, as a reduced
batch size results in more concurrent inference pipeline instances. At an MFR of 0.85, batch sizes
are typically larger. In this case, the inference model selection process becomes less flexible due to
the necessity of selecting models with better accuracy and, consequentially, more memory usage
per pipeline instance. As a result, the system opts for larger batch sizes to reduce the number of
concurrently running instances and to conform to the available memory constraints. Also note
that the observed memory utilization exhibits jumps instead of a smooth increase with available
memory. This behavior stems from the granularity of evaluation batch sizes; finer-grained batch
sizes in real implementations can rectify this and avoid potential memory under-utilization.

JITI Adjustments Facing Varying Traffic Rate. Following the same approach, we examine the
effects of traffic rate on JITI by gradually increasing the traffic rate from 100 to 15,000 flows/second
while fixing the memory availability at an indicative capacity of 10 GB (similar results are observed
at different memory capacities). We observe that the system increases its batch size as the traffic
rate grows as shown in Figure 9a. Without additional memory, heightened traffic rate can lead
to excessive concurrent pipeline instances, risking memory exceedance. To mitigate this, JITI's
adaptive scheduler increases batch size, curtailing concurrent instances. Similarly, when MFR is
set, batch sizes rise to compensate for the larger feature sets and memory consumption in selected
inference pipeline. We also show that TTD rises with increasing batch size and traffic rate as
expected. Yet, even at a peak traffic rate of 15,000 flows/second, TTD remains well below 1 second,
significantly outperforming traditional PCIPs.

4.5 Analysis of JITI’s Performance Under Variable Load.

We analyze JITI’s adaptive behavior as traffic rate increases from 500 to 50,000 flows/s. Figure 8
shows how F1-score, batch size, memory, TTD, and the resulting optimization score evolve under
rising load (with memory capped at 7 GB for visualization).

At low rates (500-4k flows/s), JITI selects a single classifier: F1~0.826, batch size 30, and
TTD~0.22s. Memory grows linearly from 6.7 GB, nearly reaching the limit. The optimization
score, Score = %ﬁgf), remains high (~3.77). JITI does not simply pick the most accurate model,
but the one maximizing this ratio. At 4.5k flows/s, a larger batch (40) allows a slightly more accurate
classifier (F1~0.827), but higher TTD (0.23s) lowers the score to ~3.64. In the mid-range (5k-20k
flows/s), batch size grows (60-100), memory again nears the ceiling, and TTD rises (~0.25s). Around
11k flows/s, JITI switches to a faster but less accurate classifier (F1 drops to 0.77-0.74), improving
TTD slightly (0.23-0.25s) but reducing the score (3.35—3.13). At 20.5k flows/s, a previously infeasi-
ble high-accuracy model fits under batch size 300, restoring F1 to ~0.826 but with TTD~0.29s and
score~2.86. The scheduler thus optimizes F1-to-cost balance, not F1 alone. At high rates (20k-50k
flows/s), JITI alternates between accurate and efficient models depending on batch feasibility.
Around 27.5-30k, larger batches (300-400) lift F1 to ~0.77 but increase TTD to 0.30-0.31s, dropping
the score to ~2.61. Beyond 30k, batch size escalates (up to 800), memory saturates near 7 GB, F1
declines to ~0.69, and TTD stabilizes near 0.33s, causing a gradual score decay.

In short, the figure shows why the optimization score must decline monotonically with traffic:
OCc¢(B)—the operational cost dominated by TTD and memory overhead—grows with load, while
ACCc(B)—the F1-Score—can at best stabilize or partially rebound. As traffic increases, certain
classifier/batch-size combinations that previously maximized the score become infeasible under the

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:16

Fl-score vs Traffic Rate

Batch Size vs Traffic Rate

Xi Jiang et al.

Memory Requirement vs Traffic Rate

Fl-score

Batch size (flows)

>

Memory Req.(GB)

°

10000 20000 30000

Traffic rate (flows/s)
TTD vs Traffic Rate

40000 50000 [10000

20000 30000
Traffic rate (flows/s)

Score vs Traffic Rate

40000

50000

35

o
530

25

0

10000 20000 30000

Traffic rate (flows/s)

40000 50000 [10000

20000 30000
Traffic rate (flows/s)

40000

50000

°

10000 20000 30000

Traffic rate (flows/s)

40000 50000

Fig. 8. JITI evaluation across traffic rates (500-50k flows/s): (a) F1-Score, (b) batch size, (c) memory usage, (d)
time-to-decision (TTD), and (e) selection score.

N
o
S

[b [}
So —e— JITI (u=0.85) N~ 40009 o iy
7 w
z —— i z
5 8 1001 ! § 8 2000
S Se
= 5E
Q 0 «Q 0
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
9 0.301 —— JITI (=0.85) D 08{ —e— JiTl
oc ac
FSoxs =~ Eg
8 M §0°
i a
f T T T y T T T et T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Traffic rate (flows/second)

Traffic rate (flows/second)

(a) JITI increases batch size at higher traffic rates, (b) With a 100% CPU limit, JITI also increases batch
increasing TTD to stay within memory limits. size and TTD to conform to CPU availability.
Fig. 9. JITI’s adaptive batching behavior under memory and CPU constraints at increasing traffic rates.

memory constraint, forcing the scheduler to defer to the best remaining feasible option. This is not
a “bad choice,” but the intended behavior of JITI, which continuously re-optimizes the ACC/OC
trade-off to maintain feasibility and efficiency under system limits. Occasional rebounds in F1
occur when, at higher load, batching shifts resource usage so that a more accurate classifier—batch
size pair once again becomes the best feasible option. Nevertheless, the overall optimization score
necessarily drifts downward, correctly reflecting the growing cost of inference at scale.

4.6 Generalization to Additional Resource Constraints

While memory serves as the primary constraint in our evaluation, JITI readily adapts to other
system resources such as CPU capacity. To demonstrate this, we evaluate a Random Forest (RF)
implementation of JITI under CPU constraints. As Figure 7b shows, under fixed traffic rate, JITI
adjusts batch sizes and model selections in response to varying CPU availability, maintaining optimal
TTD without exceeding limits. The trends mirror those under memory constraints, underscoring
JITI’s robustness. As CPU usage nears saturation, the system proactively enlarges batches to reduce
concurrent pipelines and prevent over-utilization, sustaining low TTD within resource limits.
Moreover, Figure 9b demonstrates how JITI handles varying traffic rates when CPU capacity
is fixed. As traffic rates increase, JITI intelligently scales up the batch size to maintain efficient
throughput, thereby preventing CPU saturation. Despite these increases, the TTD remains well
within acceptable bounds, further confirming the efficiency of the scheduler in managing resource
constraints. Memory and CPU are just examples of system constraints. Thanks to its modular
design, JITI can extend to other limitations such as bandwidth or storage without major changes. Its
adaptability comes from decoupling inference model selection from resource monitoring, allowing
any metric to be incorporated into scheduling. The core functions—dynamic batching and optimal
model selection—remain intact, ensuring balanced accuracy and efficiency across environments.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:17

5 Related Work

Traffic inference has been a long-standing objective for researchers and practitioners. Early methods
often relied on heuristics such as TCP/UDP port numbers and payload signatures [3, 66, 78, 90,
100]. With the availability of large network traffic datasets and increased computing power, two
prominent ML-based method categories emerged: flow-statistics-based and packet-capture-based.
FSIPs train inference models using information from network flows, such as packet counts and sizes,
flow duration, and inter-arrival time [12, 49, 54, 55], or statistics from tools such as NetFlow [24] and
IPFIX [25]. While efficient in terms of operational constraint, e.g., TTD, and system constraints, e.g.,
memory usage, they are relatively brittle due to the constantly evolving nature of the Internet [14,
47,59, 67, 80, 93, 97]. Changes over time can alter the landscape of used traffic features, as domain
expert-crafted features are static and hard to update, especially with increasing level of encryption
making them unavailable or inaccurate. JITI aims to achieve similar efficiency of these methods
while overcoming their inherent limitations. Recent advancements in computing and ML have
fueled representation learning in traffic inference, offering inference pipelines that do not require
domain experts for feature identification [11, 12, 18, 28, 49, 62, 79, 87, 103]. These approaches,
often more accurate and robust, excel in detecting complex patterns in detailed packet-level
features, even amidst encryption. Yet, the higher inference accuracy comes at the cost of increased
overhead: preprocessing raw network data for ML model compatibility is both time and memory-
intensive [18, 28, 87, 103]. JITI achieves similar accuracy to these methods while overcoming
resource inefficiencies.

Beyond FSIPs and PCIPs, there also exists efficiency-oriented methods. Existing low-latency net-
work traffic inference pipelines mostly focus on enhancing efficiency by reducing model complexity
through lightweight models or simpler feature representations [27, 51, 56, 57, 73, 75, 91]. Others use
ensemble techniques or tree-structured ML to improve inference efficiency using diverse families of
ML algorithms [30, 33, 61]. These efforts focus primarily on model execution in inference pipelines,
but lack emphasis on optimizing inference pipelines for computational resources such as memory,
affecting their practicality. Current solutions often rely on specialized hardware like P4 switches,
which constrains generalizability [82, 88, 89].

Lastly, two additional strands of research provide useful context for our work: (1) general-
purpose adaptive inference serving systems that dynamically switch models or configurations,
and (2) network-specific analysis frameworks that explore in-network or runtime adaptation.
Adaptive inference serving frameworks dynamically select models or execution paths to meet
resource or latency constraints. Representative systems include Clipper [27], Jellyfish [68], and
CascadeServe [52], which switch among models or configurations at runtime to balance accuracy
and efficiency. While effective in generic ML serving contexts, these approaches are not designed
for network traffic inference, which must process high-throughput packet streams under strict
operational and system constraints. JITI differs by co-optimizing both the inference model (via
feature set selection) and batch size, tailored for traffic analysis workloads. Another line of work
integrates machine learning directly into network-specific inference systems. Jewel [5], for instance,
combines packet- and flow-level information but depends on programmable switch hardware
(P4), limiting deployability. Other systems such as FENXI [36] and Leo [43] introduce adaptive
mechanisms but only partially address the design space: FENXI supports adaptive batching without
model switching, while Leo provides runtime model switching without batch-level adaptation.
In contrast, JITI is a software-based solution on commodity hardware that unifies both adaptive
batching and model selection, enabling constraint-aware inference in high-load access networks.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:18 Xi Jiang et al.

6 Discussion and Future Work

Beyond Packet Headers. Our evaluation has focused on packet header features to validate JITL
Incorporating additional derived or cross-layer features could further improve inference accuracy
and efficiency. Future work will test JITT's robustness under such extended feature spaces to provide
deeper insights into its effectiveness across diverse networked systems.

Ensemble Models. The flexible feature sets of JITI allow selecting models best suited to chosen
inputs, and integrating diverse model types and architectures may improve efficiency and accuracy.
While preprocessing efficiency is our main goal, ensemble approaches remain a promising extension.

Model Retraining and Offline Cost. Retraining to handle new inference tasks and data/model
drift is outside our scope but well studied [37, 63, 96]. Our focus is efficient deployment of trained
models. Although JITI’s offline optimization steps can be computationally intensive, they are
essential for tuning to deployment environments and do not affect real-time inference.

Generalization to System Constraints and Models. The scheduler can optimize accuracy-to-
operational-cost ratios for any measurable resource metric and filter out combinations that violate
constraints, including multiple simultaneous ones through extra condition checks. Its modular
design ensures adaptability to diverse models and environments, as demonstrated in Section 4.4
using memory as the main constraint and CPU capacity as an example.

Encrypted Network Traffic. Highly encrypted traffic (e.g., QUIC, VPN) obscures packet con-
tents, making ML-based inference harder. Evaluating JITI under different encryption levels is
promising, as its adaptable feature sets may mitigate risks of overfitting to limited observable
features.

Dataset Limitations. Curated datasets may be outdated or misrepresent Internet topology,
as seen with ISCX VPN-NonVPN [32], CAIDA [1], and QUIC [92]. Many also lack flow-level
application/service labels critical for inference evaluation. Future work should assess JITI with
real-time, labeled traffic data to strengthen practical applicability.

Accuracy Guarantees Under Peak Load. A natural concern in real-world deployments is the
acceptability of accuracy losses during peak traffic conditions, precisely when traffic classification is
most critical. JITI partially addresses this by allowing deployments to specify a minimum F1-score
requirement (p). The MFR is optional because different deployments may prioritize efficiency over
accuracy, or conversely demand strict accuracy floors. By making y tunable rather than fixed, JITI
ensures that operators can explicitly control this trade-off. However, using MFR also limits the
usable model set, which can cause JITI to become load-limited if load exceeds what this subset of
models can support—a potential direction for future research.

7 Conclusion

Network traffic inference at varying traffic rates with limited resources is challenging for a spectrum
of network management tasks. Conventional flow-statistics-based methods are efficient but struggle
with accuracy as the Internet evolves, whereas raw packet-capture-based inference pipelines boost
accuracy but are slow and resource-intensive. This paper introduces the Just-in-Time Traffic
Inference (JITI) system, which balances inference accuracy and efficiency under different traffic
rates while meeting system constraints. We develop an efficient exploration algorithm to create a
pool of inference models and an online adaptive scheduler to choose the most appropriate model
and batch size considering resource availability and traffic rate. Evaluation shows that the system
(1) performs better (>18% higher in F1-Score) than flow-statistics-based methods, and (2) processes
traffic ~127x faster compared to conventional packet-capture methods. The system’s potential
extends beyond traffic inference, with prospects for addressing other tasks that rely on ML-based
inference in networked systems.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:19

References

[1] 2019. The caida anonymized internet traces dataset (April 2008 - January 2019). https://www.caida.org/catalog/
datasets/passive_dataset/

[2] Laith Mohammad Abualigah, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, Zaid Abdi Alkareem Alyasseri,
Osama Ahmad Alomari, and Essam Said Hanandeh. 2017. Feature selection with S-hill climbing search for text
clustering application. In 2017 Palestinian International Conference on Information and Communication Technology
(PICICT). IEEE, 22-27.

[3] Giuseppe Aceto, Alberto Dainotti, Walter De Donato, and Antonio Pescapé. 2010. PortLoad: taking the best of two
worlds in traffic classification. In 2010 INFOCOM IEEE Conference on Computer Communications Workshops. IEEE, 1-5.

[4] Iman Akbari, Mohammad A Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba, Bertrand Mathieu, Stephanie
Moteau, and Stephane Tuffin. 2021. A look behind the curtain: traffic classification in an increasingly encrypted web.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, 1 (2021), 1-26.

[5] Aristide Tanyi-Jong Akem, Beyza Biitiin, Michele Gucciardo, and Marco Fiore. 2024. Jewel: Resource-efficient joint
packet and flow level inference in programmable switches. In IEEE INFOCOM 2024-IEEE Conference on Computer
Communications. IEEE, 1631-1640.

[6] Aristide Tanyi-Jong Akem, Michele Gucciardo, Marco Fiore, et al. 2023. Flowrest: Practical Flow-Level Inference in
Programmable Switches with Random Forests. In IEEE International Conference on Computer Communications.

[7] Ons Aouedi, Kandaraj Piamrat, and Benoit Parrein. 2021. Performance evaluation of feature selection and tree-
based algorithms for traffic classification. In 2021 IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 1-6.

[8] Rushi Jayeshkumar Babaria, Minzhao Lyu, Gustavo Batista, and Vijay Sivaraman. 2025. FastFlow: Early Yet Ro-
bust Network Flow Classification using the Minimal Number of Time-Series Packets. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 9, 2 (2025), 1-27.

[9] Fred Baker, Bill Foster, and Chip Sharp. 2004. Cisco architecture for lawful intercept in IP networks. Internet
Engineering Task Force, RFC 3924 (2004).

[10] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic characteristics of data centers in the
wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. 267-280.

[11] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave Salamatian. 2006. Traffic classification
on the fly. ACM SIGCOMM Computer Communication Review 36, 2 (2006), 23-26.

[12] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. 2006. Early application identification. In Proceedings of the
2006 ACM CoNEXT conference. 1-12.

[13] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5-32.

[14] Francesco Bronzino, Nick Feamster, Shinan Liu, James Saxon, and Paul Schmitt. 2021. Mapping the digital divide:
before, during, and after COVID-19. In TPRC48: The 48th Research Conference on Communication, Information and
Internet Policy.

[15] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Hyojoon Kim, Renata Teixeira, and Nick Feamster. 2021. Traffic

refinery: Cost-aware data representation for machine learning on network traffic. Proceedings of the ACM on

Measurement and Analysis of Computing Systems 5, 3 (2021), 1-24.

Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teixeira, and Nick Feamster. 2019. Inferring

streaming video quality from encrypted traffic: Practical models and deployment experience. Proceedings of the ACM

on Measurement and Analysis of Computing Systems 3, 3 (2019), 1-25.

[17] Jacob Alexander Markson Brown, Xi Jiang, Van Tran, Arjun Nitin Bhagoji, Nguyen Phong Hoang, Nick Feamster,

Prateek Mittal, and Vinod Yegneswaran. 2023. Augmenting Rule-based DNS Censorship Detection at Scale with

Machine Learning. arXiv preprint arXiv:2302.02031 (2023).

Zhiyong Bu, Bin Zhou, Pengyu Cheng, Kecheng Zhang, and Zhen-Hua Ling. 2020. Encrypted network traffic

classification using deep and parallel network-in-network models. IEEE Access 8 (2020), 132950-132959.

Coralie Busse-Grawitz, Roland Meier, Alexander Dietmiiller, Tobias Biihler, and Laurent Vanbever. 2019. pforest:

In-network inference with random forests. arXiv preprint arXiv:1909.05680 (2019).

Christian Callegari, Sandrine Vaton, and Michele Pagano. 2008. A new statistical approach to network anomaly

detection. In 2008 International Symposium on Performance Evaluation of Computer and Telecommunication Systems.

IEEE, 441-447.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining. 785-794.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. 2015. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems.

arXiv preprint arXiv:1512.01274. https://arxiv.org/abs/1512.01274

[23] Kimberly C Claffy. 1995. Internet traffic characterization. (1995).

[16

—

[18

=

[19

—

[20

-

[21

—

[22

—

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://arxiv.org/abs/1512.01274

45:20

[24]
[25]

[26]
[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]
(37]

(38

=

(39]
(40]

[41]

[42]

[43]

(45

—

(46

—

(47

—

Proc.

Xi Jiang et al.

Benoit Claise. 2004. Cisco systems netflow services export version 9. Technical Report.

Benoit Claise. 2008. Specification of the IP flow information export (IPFIX) protocol for the exchange of IP traffic flow
information. Technical Report.

Alessandro Cornacchia. 2020. Optimized Flow Scheduling for Low Latency Data Center Networks. Ph. D. Dissertation.
Politecnico di Torino.

Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael] Franklin, Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A
Low-Latency Online Prediction Serving System.. In NSDI, Vol. 17. 613-627.

Susu Cui, Bo Jiang, Zhenzhen Cai, Zhigang Lu, Song Liu, and Jian Liu. 2019. A session-packets-based encrypted
traffic classification using capsule neural networks. In 2019 IEEE 21st International Conference on High Performance
Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 429-436.

Alberto Dainotti, Antonio Pescape, and Kimberly C Clafty. 2012. Issues and future directions in traffic classification.
IEEE network 26, 1 (2012), 35-40.

Kayathri Devi Devprasad, Sukumar Ramanujam, and Suresh Babu Rajendran. 2022. Context adaptive ensemble
classification mechanism with multi-criteria decision making for network intrusion detection. Concurrency and
Computation: Practice and Experience 34, 21 (2022), e7110.

Christian Dewes, Arne Wichmann, and Anja Feldmann. 2003. An analysis of Internet chat systems. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet measurement. 51-64.

Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and Ali A Ghorbani. 2016. Characteriza-
tion of encrypted and vpn traffic using time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). sn, 407-414.

Dewan Md Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman, Rebecca Strachan, Graham Sexton, and
Keshav Dahal. 2013. An adaptive ensemble classifier for mining concept drifting data streams. Expert Systems with
Applications 40, 15 (2013), 5895-5906.

Michael E Farmer, Shweta Bapna, and Anil K Jain. 2004. Large scale feature selection using modified random mutation
hill climbing. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Vol. 2. IEEE,
287-290.

Center for Applied Internet Data Analysis (CAIDA). 2023. Passive Monitor Dataset at Equinix in Chicago. https:
//www.caida.org/catalog/datasets/monitors/passive-equinix-chicago/ Accessed: 2023-06-12.

Massimo Gallo, Alessandro Finamore, Gwendal Simon, and Dario Rossi. 2021. FENXI: Deep-learning Traffic Analytics
at the edge. In 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 202-213.

Jodo Gama, Indré Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept
drift adaptation. ACM Computing Surveys (CSUR) 46, 4 (2014), 1-37.

Saptarsi Goswami, Sanjay Chakraborty, Priyanka Guha, Arunabha Tarafdar, and Aman Kedia. 2019. Filter-based
feature selection methods using hill climbing approach. Natural computing for unsupervised learning (2019), 213-234.
Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New directions in automated traffic analysis.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 3366-3383.
Ren-Hung Hwang, Min-Chun Peng, Chien-Wei Huang, Po-Ching Lin, and Van-Linh Nguyen. 2020. An unsupervised
deep learning model for early network traffic anomaly detection. IEEE Access 8 (2020), 30387-30399.

Didier Frank Isingizwe, Meng Wang, Wenmao Liu, Dongsheng Wang, Tiejun Wu, and Jun Li. 2021. Analyzing
learning-based encrypted malware traffic classification with automl. In 2021 IEEE 21st International Conference on
Communication Technology (ICCT). IEEE, 313-322.

Kleidi Ismailaj, Miguel Camelo, and Steven Latré. 2021. When deep learning may not be the right tool for traffic
classification. In 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE, 884—-889.
Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawarmalani. 2024. Leo: Online {ML-based} Traffic Clas-
sification at {Multi-Terabit} Line Rate. In 21st USENLX Symposium on Networked Systems Design and Implementation
(NSDI 24). 1573-1591.

Hongbo Jiang, Andrew W Moore, Zihui Ge, Shudong Jin, and Jia Wang. 2007. Lightweight application classification
for network management. In Proceedings of the 2007 SIGCOMM workshop on Internet network management. 299-304.
Xi Jiang and Noah Apthorpe. 2021. Automating Internet of Things network traffic collection with robotic arm
interactions. arXiv preprint arXiv:2110.00060 (2021).

Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt, Francesco Bronzino, and Nick
Feamster. 2024. Netdiffusion: Network data augmentation through protocol-constrained traffic generation. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 8, 1 (2024), 1-32.

Xi Jiang, Saloua Naama Shinan Liu, Francesco Bronzino, Paul Schmitt, and Nick Feamster. [n. d.]. Towards Designing
Robust and Efficient Classifiers for Encrypted Traffic in the Modern Internet. ([n. d.]).

ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

https://www.caida.org/catalog/datasets/monitors/passive-equinix-chicago/
https://www.caida.org/catalog/datasets/monitors/passive-equinix-chicago/

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:21

(48]

(49]

(50

=

[51]

(52]

(53]

(54

[l

(55

—

(56

—

[57

—

(58]

[59

—

[60]

[61

—

[62]

(63]

(64

flan)

(65

—

(66

=

[67]

(68

[t

[69]

(70]

Dongzi Jin, Yiqin Lu, Jiancheng Qin, Zhe Cheng, and Zhongshu Mao. 2020. SwiftIDS: Real-time intrusion detection
system based on LightGBM and parallel intrusion detection mechanism. Computers & Security 97 (2020), 101984.
Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. 2005. BLINC: multilevel traffic classification
in the dark. In Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer
communications. 229-240.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30 (2017).
Oguz Kaan Koksal, Recep Temelli, Huseyin Ozkan, and Ozgur Gurbuz. 2022. Markov Model Based Traffic Classification
with Multiple Features. In 2022 International Balkan Conference on Communications and Networking (BalkanCom).
IEEE, 173-177.

Ferdi Kossmann, Ziniu Wu, Alex Turk, Nesime Tatbul, Lei Cao, and Samuel Madden. 2024. CascadeServe: Unlocking
Model Cascades for Inference Serving. arXiv preprint arXiv:2406.14424 (2024).

Cing-Han Lai, Chao-Tung Yang, Endah Kristiani, Jung-Chun Liu, and Yu-Wei Chan. 2020. Using xgboost for cyberattack
detection and analysis in a network log system with elk stack. In Frontier Computing: Theory, Technologies and
Applications (FC 2019) 8. Springer, 302-311.

Tanja Lang, Grenville Armitage, Phillip Branch, and Hwan-Yi Choo. 2003. A synthetic traffic model for Half-Life. In
Australian Telecommunications Networks & Applications Conference, Vol. 2003.

Tanja Lang, Philip Branch, and Grenville Armitage. 2004. A synthetic traffic model for Quake3. In Proceedings of the
2004 ACM SIGCHI International Conference on Advances in computer entertainment technology. 233-238.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez. 2020. Train big, then
compress: Rethinking model size for efficient training and inference of transformers. In International Conference on
machine learning. PMLR, 5958-5968.

Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet classification. In Proceedings of the ACM Special
Interest Group on Data Communication. 256—269.

Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, and Youn-Hee Han. 2019. Packet-
based network traffic classification using deep learning. In 2019 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC). IEEE, 046-051.

Shinan Liu, Paul Schmitt, Francesco Bronzino, and Nick Feamster. 2021. Characterizing service provider response to
the COVID-19 pandemic in the United States. In International Conference on Passive and Active Network Measurement.
Springer, 20-38.

Shinan Liu, Ted Shaowang, Gerry Wan, Jeewon Chae, Jonatas Marques, Sanjay Krishnan, and Nick Feamster. 2024.
ServeFlow: A Fast-Slow Model Architecture for Network Traffic Analysis. arXiv preprint arXiv:2402.03694 (2024).
Zhen Liu, Nathalie Japkowicz, Ruoyu Wang, and Deyu Tang. 2019. Adaptive learning on mobile network traffic data.
Connection Science 31, 2 (2019), 185-214.

Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and Mohammdsadegh Saberian. 2020.
Deep packet: A novel approach for encrypted traffic classification using deep learning. Soft Computing 24, 3 (2020),
1999-2012.

Jun Lu, Shazia Sadiq, and Yan Qu. 2018. Data quality in machine learning: A review. arXiv preprint arXiv:1812.02250
(2018).

Qianli Ma, Wei Huang, Yanliang Jin, and Jianhua Mao. 2021. Encrypted traffic classification based on traffic recon-
struction. In 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE, 572-576.

Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Measuring the performance and network
utilization of popular video conferencing applications. In Proceedings of the 21st ACM Internet Measurement Conference.
229-244.

Andrew W Moore and Konstantina Papagiannaki. 2005. Toward the accurate identification of network applications.
In International workshop on passive and active network measurement. Springer, 41-54.

David Moore, Colleen Shannon, Douglas] Brown, Geoffrey M Voelker, and Stefan Savage. 2006. Inferring internet
denial-of-service activity. ACM Transactions on Computer Systems (TOCS) 24, 2 (2006), 115-139.

Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish: Timely inference serving for dynamic edge
networks. In 2022 IEEE Real-Time Systems Symposium (RTSS). IEEE, 277-290.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.

Vern Paxson. 1994. Empirically derived analytic models of wide-area TCP connections. IEEE/ACM transactions on
Networking 2, 4 (1994), 316-336.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:22 Xi Jiang et al.

[71] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time. Computer networks 31, 23-24 (1999),
2435-2463

[72] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

Julien Piet, Dubem Nwoji, and Vern Paxson. 2023. GGFAST: Automating Generation of Flexible Network Traffic

Classifiers. In Proceedings of the ACM SIGCOMM 2023 Conference. 850—-866.

Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. 2019. Hyperparameters and tuning strategies for

random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery 9, 3 (2019), e1301.

[75] Kun Qiu, Harry Chang, Ying Wang, Xiahui Yu, Wenjun Zhu, Yingqi Liu, Jianwei Ma, Weigang Li, Xiaobo Liu, and
Shuo Dai. 2022. Traffic Analytics Development Kits (TADK): Enable Real-Time Al Inference in Networking Apps. In
2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUEN). IEEE, 392-398.

[76] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter Joosen. 2017. Automated website
fingerprinting through deep learning. arXiv preprint arXiv:1708.06376 (2017).

[77] Martin Roesch. 2005. Snort-the de facto standard for intrusion detection/prevention.

[78] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. 2004. Accurate, scalable in-network identification of p2p
traffic using application signatures. In Proceedings of the 13th international conference on World Wide Web. 512-521.

[79] Tal Shapira and Yuval Shavitt. 2019. Flowpic: Encrypted internet traffic classification is as easy as image recognition. In
IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 680-687.

[80] Yuval Shavitt and Eran Shir. 2005. DIMES: Let the Internet measure itself. ACM SIGCOMM Computer Communication

Review 35, 5 (2005), 71-74.

Pallavi Singhal, Rajeev Mathur, and Himani Vyas. 2013. State of the Art Review of Network Traffic Classification

based on Machine Learning Approach. International Journal of Computer Applications 975 (2013), 8887.

[82] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh, Gianni Antichi, Paolo Costa, Hamed
Haddadi, and Roberto Bifulco. 2022. Re-architecting Traffic Analysis with Neural Network Interface Cards. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

(73

=

(74

flanr)

—
oo
—

—

—
(o)
w

[t

David B Skalak. 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In

Machine Learning Proceedings 1994. Elsevier, 293-301.

[84] Robin Sommer. 2003. Bro: An open source network intrusion detection system. Security, E-learning, E-Services, 17.
DEFN-Arbeitstagung iiber Kommunikationsnetze (2003).

[85] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using Machine Learning for Network Intrusion
Detection. In 2010 IEEE Symposium on Security and Privacy. 305-316. https://doi.org/10.1109/SP.2010.25

[86] Lawrence Stewart, Grenville Armitage, Philip Branch, and Sebastian Zander. 2005. An architecture for automated
network control of QoS over consumer broadband links. In TENCON 2005-2005 IEEE Region 10 Conference. IEEE, 1-6.

[87] Boyu Sun, Wenyuan Yang, Mengqi Yan, Dehao Wu, Yuesheng Zhu, and Zhiqiang Bai. 2020. An encrypted traffic
classification method combining graph convolutional network and autoencoder. In 2020 IEEE 39th International
Performance Computing and Communications Conference (IPCCC). IEEE, 1-8.

[88] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun. 2022. Taurus: A Data
Plane Architecture for Per-Packet ML. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[89] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle Olukotun. 2023. Homunculus: Auto-
Generating Efficient Data-Plane ML Pipelines for Datacenter Networks. In ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[90] Geza Szabo, Istvan Szabo, and Daniel Orincsay. 2007. Accurate Traffic Classification. In 2007 IEEE International

Symposium on a World of Wireless, Mobile and Multimedia Networks. 1-8. https://doi.org/10.1109/WOWMOM.2007.

4351725

Da Tong, Yun R Qu, and Viktor K Prasanna. 2014. High-throughput traffic classification on multi-core processors. In

2014 IEEE 15th International Conference on High Performance Switching and Routing (HPSR). IEEE, 138-145.

Van Tong, Hai Anh Tran, Sami Souihi, and Abdelhamid Mellouk. 2018. A novel quic traffic classifier based on

convolutional neural networks. In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 1-6.

Martino Trevisan, Danilo Giordano, Idilio Drago, Marco Mellia, and Maurizio Munafo. 2018. Five Years at the Edge:

Watching Internet from the ISP Network. In CONEXT 2018. Heraklion, Greece.

[94] Gerry Wan, Shinan Liu, Francesco Bronzino, Nick Feamster, and Zakir Durumeric. 2024. CATO: End-to-End Opti-

mization of ML-Based Traffic Analysis Pipelines. arXiv preprint arXiv:2402.06099 (2024).

Maonan Wang, Kangfeng Zheng, Dan Luo, Yanqing Yang, and Xiujuan Wang. 2020. An encrypted traffic classification

framework based on convolutional neural networks and stacked autoencoders. In 2020 IEEE 6th International Conference

on Computer and Communications (ICCC). IEEE, 634-641.

[91

—

[92

—

[93

=

[95

[}

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/WOWMOM.2007.4351725
https://doi.org/10.1109/WOWMOM.2007.4351725

JITI: Dynamic Model Serving for Just-in-Time Traffic Inference 45:23

[96]

(98]

Geoftrey I Webb, Roy Hyde, Hong Cao, Hai L Nguyen, and Francois Petitjean. 2016. Characterizing concept drift.
Data Mining and Knowledge Discovery 30, 4 (2016), 964-994.

Carey Williamson. 2001. Internet traffic measurement. IEEE internet computing 5, 6 (2001), 70-74.

Xuwei Xue, Shaojuan Zhang, Bingli Guo, Wei Ji, Rui Yin, Bin Chen, and Shanguo Huang. 2023. Optical Switching
Data Center Networks: Understanding Techniques and Challenges. arXiv preprint arXiv:2302.05298 (2023).

Haipeng Yao, Chong Liu, Peiying Zhang, Sheng Wu, Chunxiao Jiang, and Shui Yu. 2019. Identification of encrypted
traffic through attention mechanism based long short term memory. IEEE Transactions on Big Data (2019).
Sung-Ho Yoon, Jin-Wan Park, Jun-Sang Park, Young-Seok Oh, and Myung-Sup Kim. 2009. Internet application traffic
classification using fixed IP-port. In Asia-Pacific Network Operations and Management Symposium. Springer, 21-30.
Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensoussane, Antoine Bernabeu, Shay
Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. IIsy: Practical in-network classification. arXiv preprint
arXiv:2205.08243 (2022).

Wenbo Zheng, Chao Gou, Lan Yan, and Shaocong Mo. 2020. Learning to classify: A flow-based relation network for
encrypted traffic classification. In Proceedings of The Web Conference 2020. 13-22.

Weiping Zheng, Jianhao Zhong, Qizhi Zhang, and Gansen Zhao. 2022. MTT: an model for encrypted network traffic
classification using multi-task transformer. Applied Intelligence (2022), 1-16.

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

45:24 Xi Jiang et al.

A Additional JITI Feature Analysis

TTD Me‘mory Performance

Feature Sets (seconds) Requirement (F1-Score)

(MB per instance)

ipv4-dfbit&tep-fin&ipv4-ttl&tep-ackf 0.303 315 0.744
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-acks 0.318 323 0.772
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff 0.32 317 0.773
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-psh 0.326 321 0.774
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-ackf&tep-psh 0.334 323 0.791
ipv4-dfbit&tep-fin&ipv4-ttl 0.293 317 0.693
ipv4-dfbit&tep-fin&ipv4-ttl&tep-psh 0.307 321 0.716
ipv4-dfbit&tcp-fin&tep-wsize 0.316 321 0.736
ipva-dfbit&ipva-ttl 0.282 331 0.655
ipv4-dfbit&tcp-fin&ipv4-ttl&tep-wsize 0.357 317 0.826
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&ipv4-tos 0.352 323 0.797
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-ackf&ipv4-tos 0.354 317 0.792
ipv4-dfbit&tep-fin&ipv4-ttl&ipv4-tl 0.362 319 0.8
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&udp-cksum 0.373 338 0.815
ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-ackf&udp-cksum 0.376 312 0.815

Table 5. Top 15 inference models in the pool generated for evaluation purpose, with the highest performance-
to-efficiency ratios at a selected batch size of 500 flows.

A.1 JITI Comparison to Simple Lightweight Pipelines

In addition to our primary baseline comparisons, we provide supplementary analysis (Table 6)
to further demonstrate the effectiveness of JITI’s flexibility in feature selection and its adaptive
scheduler in achieving high F1-Scores and low TTDs. Specifically, we created five additional
lightweight PCIPs using the LightGBM algorithm. These pipelines use models that rely on a limited,
fixed set of heuristic-based features selected based on the highest Bf—f’sl ratios using the heuristic
introduced in Section 3.1, but do not support flexible adjustments to feature requirements as JITI
does. The results show that JITI consistently outperforms all five lightweight PCIPs, achieving
significantly lower TTD and superior inference accuracy.

Classifier Features F1-Score | TTD (seconds)
;gi Eﬁgﬁtggm Z ; g) 85) Dynamically Chosen by Adaptive Scheduler 82(5) 83?

LightGBM 1 ipv4-dfbit 0.32 0.63

LightGBM 2 ipv4-dfbit&tcp-fin 0.42 0.88

LightGBM 3 ipv4-dfbit&tep-fin&ipv4-ttl 0.7 01.26
LightGBM 4 ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff 0.77 1.33

LightGBM 5 ipv4-dfbit&tep-fin&ipv4-ttl&tep-doff&tep-ackt | 0.77 1.48

Table 6. JITI implementations with LightGBM surpasses all simple LightGBM classifiers with small fixed
feature requirements in terms of TTD and classification performance..

Received June 2025; accepted September 2025

Proc. ACM Netw., Vol. 3, No. CONEXT4, Article 45. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Existing Methods
	2.2 Accuracy and Efficiency Trade-offs
	2.3 Deployment Scenario and System Constraints.

	3 Just-in-Time Traffic Inference
	3.1 Heuristics-based Feature Exploration and Inference Model Generation
	3.2 Accuracy and Efficiency Measurements at Varying Batch Sizes
	3.3 Adaptive Scheduler

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Accuracy in Unconstrained Environments
	4.3 Suitability for Resource-Constrained Environments
	4.4 Behaviors Under Varying System Constraints and Traffic Rates
	4.5 Analysis of JITI's Performance Under Variable Load.
	4.6 Generalization to Additional Resource Constraints

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References
	A Additional JITI Feature Analysis
	A.1 JITI Comparison to Simple Lightweight Pipelines

