NetSSM: Multi-Flow and State-Aware Network Trace
Generation using State-Space Models

ANDREW CHU®, University of Chicago, USA

XI JIANG”, University of Chicago, USA

SHINAN LIU, University of Hong Kong, Hong Kong

ARJUN BHAGOQO]I, IIT Bombay, India

FRANCESCO BRONZINO, Ecole Normale Supérieure de Lyon; Institut Universitaire de France, France
PAUL SCHMITT, California Polytechnic State University, USA

NICK FEAMSTER, University of Chicago, USA

Access to raw network traffic data is essential for many computer networking tasks, from traffic modeling
to performance evaluation. Unfortunately, this data is scarce due to high collection costs and governance
rules. Previous efforts explore this challenge by generating synthetic network data, but fail to reliably han-
dle multi-flow sessions, struggle to reason about stateful communication in moderate to long-duration net-
work sessions, and lack robust evaluations tied to real-world utility. We propose a new method based on
state-space models called NETSSM that generates raw network traffic at the packet-level granularity. Our
approach captures interactions between multiple, interleaved flows — an objective unexplored in prior work
- and effectively reasons about flow-state in sessions to capture traffic characteristics. NETSSM accomplishes
this by training with a context window more than 8x longer, and produces traces up to 78x longer than exist-
ing transformer-based raw packet generators. Evaluation results show that NETSSM generates high-fidelity
traces that outperform prior efforts in existing benchmarks. We also find that NETSSM’s traces have high
semantic similarity to real network data regarding compliance with standard protocol requirements and flow
and session-level traffic characteristics.

CCS Concepts: » Networks — Network simulations; « Computing methodologies — Neural networks.
Additional Key Words and Phrases: State space models, Network trace generation

ACM Reference Format:

Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster. 2026.
NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models. Proc. ACM Netw.
4, CoNEXT1, Article 6 (March 2026), 24 pages. https://doi.org/10.1145/3786289

1 Introduction

There is high demand for representative, scalable network data, driven by applications in security
analysis, traffic modeling, and performance evaluation [2, 21, 34, 39, 42]. Unfortunately, acquiring
large-scale, high-fidelity network data is difficult due to data governance policies, and high collec-
tion costs [1, 10]. In response, methods have been developed to generate synthetic network data

“Equal contribution.

Authors’ Contact Information: Andrew Chu, University of Chicago, Chicago, Illinois, USA; Xi Jiang, University of Chicago,
Chicago, Illinois, USA; Shinan Liu, University of Hong Kong, Hong Kong, Hong Kong; Arjun Bhagoji, IIT Bombay, Mumbai,
India; Francesco Bronzino, Ecole Normale Supérieure de Lyon; Institut Universitaire de France, Lyon, France; Paul Schmitt,
California Polytechnic State University, San Luis Obispo, California, USA; Nick Feamster, University of Chicago, Chicago,
Illinois, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2834-5509/2026/3-ART6

https://doi.org/10.1145/3786289

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

https://doi.org/10.1145/3786289
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786289

6:2 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

that accurately replicates real networks, allowing researchers and practitioners to test, evaluate,
and model scenarios while minimizing collection overhead and obstacles in accessibility.

Existing methods for generating synthetic network data output this data in two forms: (1) se-
quences of single or multiple derived network traffic attributes, such as flow statistics (e.g., du-
ration, average packet size), packet header fields (e.g., IP flags, addresses), or metadata (e.g., web
page views, event types) and (2) raw packet capture (PCAP) traces. Generators producing traffic at-
tributes can be used to replicate patterns in arbitrarily long network communications. Generators
producing PCAP traces capture the verbose, detailed, communication exchanged between hosts,
and commodity packet analyzers (e.g., Wireshark) can analyze their resulting PCAPs.

Unfortunately, current methods for either output format have limitations that impact their prac-
tical use. Traffic attribute generators cannot reason about the raw contents of stateful protocols,
such as TCP, and require retraining to learn the patterns of new targets in a session. Raw packet
generators are limited in the length of traces they can train on and produce and, thus, may not
capture meaningful communication between nodes beyond initial connection setup. Further, nei-
ther generator type can reliably produce data for sessions comprised of more than a single flow,
preventing them from being applied to various workloads in the real world, where interleaved,
multi-flow communication is common (e.g., distributed systems, IoT). Finally, current methods for
evaluating the quality of synthetic network data (i.e., statistical similarity to real-world traces and
downstream performance of ML models trained on synthetic data) are insufficient. Synthetic data
that perform well in, or towards, these evaluations can still fall short in scenarios that require anal-
ysis of multi-flow interactions or stateful behaviors in network traffic (e.g., QoE estimation [37],
application fingerprinting [28]). Thus, determining the criteria for what qualities or characteristics
make synthetic network data “good” is an ongoing area of research.

In this paper, we present NETSSM, a raw packet generator for network traffic data built on the
recently proposed structured selective state-space model (Mamba) architecture. NETSSM bridges
the gap between traffic attribute and raw packet generators by combining the former’s length-
scaling capabilities with the latter’s comprehensive packet-level detail. This enables NETSSM to
capture a substantially wider range of target events while retaining the ability to capture inter-
and intra-packet dependencies across any protocol and layer. Furthermore, the sequential, stateful
nature of how NETSSM learns network data allows it to generate sessions comprised of multiple
interleaved flows with high fidelity, addressing a limitation of existing methods.

We evaluate NETSSM on social media, video conferencing, and video streaming traffic. First,
we assess its performance using established metrics of synthetic network data fidelity (statistical
similarity and downstream ML performance). We then evaluate NETSSM’s semantic similarity, test-
ing how well its generated data aligns with the behavioral characteristics of real-world network
communication. Finally, we verify that NETSSM’s traces are both protocol compliant, and mimic,
rather than memorize patterns in training data. This analysis aims to offer a more functional and
application-oriented perspective on the quality of synthetic data, emphasizing its practical utility
beyond statistical resemblance. Our main contributions are:

+ Synthetic multi-flow sessions. NETSSM’s recurrent nature enables it to produce traces
for sessions comprised of both single flow and multi-interleaved flows, with high fidelity.
Multi-flow trace generation is a new contribution largely unexplored in prior generators.

+ Capturing flow-state-dependent session events. NETSSM trains using a context window
more than 8x longer, and produces traces up to 78x longer than existing transformer-based
raw packet generators. This enables it to learn from and output traces that capture flow-
state-dependent events occurring later in a session that rely on early connection setup, or
multiple interactions between flows and/or packets.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:3

« Superior performance on existing benchmarks. NETSSM outperforms current state-of-
the-art network data generators in existing benchmarks. In statistical similarity, NETSSM
achieves an average Jensen-Shannon Divergence across generated traffic attributes of 0.05,
versus 0.18 and 0.06 for NetShare [46] and NetDiffusion [24], respectively. In performance
of downstream ML models trained on synthetic data, a random forest classifier trained en-
tirely on synthetic NETSSM data achieves accuracy of 0.97 on held-out ground truth data,
compared to 0.13 and 0.16 for NetShare and NetDiffusion respectively.

Behaviorally accurate and protocol-adherent traffic. NETSSM generates synthetic traf-
fic with high semantic similarity to real traces. This traffic can (1) capture application-specific
traffic patterns, and (2) show robust session-level compliance with standard TCP protocol
requirements, capturing both correct stateful behavior and common real-world anomalies
(e.g., partial teardowns, conflicting flags). For (1), NETSSM can generate traces that capture
the sequential communication and distributional patterns in traffic, even presented with
complex, multi-flow traffic comprised of multiple steps (e.g., setup with CDN endpoints be-
fore video segment downloads for video streaming traffic).

NETSSM’s code and training datasets are open sourced at https://github.com/noise-lab/netssm.

2 Related Work

Techniques for generating synthetic network data aim to replicate the characteristics of real-world
communication between networked devices, either through higher-level traffic attributes about
packets or a session, or raw packet captures. Traffic generators can be categorized into two main
approaches: traffic attribute generators and raw packet generators.

2.1 Traffic Attribute Generators

Traffic attribute generators use simulation or machine learning to produce higher-level data de-
scribing networked communication. Simulation-based approaches were the earliest method for
synthesizing network data, using user-defined templates to configure a simulated network (e.g., topol-
ogy, link specifications, workload), and replaying or emulating communication on this network
to produce traffic attributes relevant to the simulated network. Notable efforts in this approach in-
clude NS-3 [19], TRex [8], and others [3, 5, 27], which remain popular due to their configurability,
versatility, and relative inexpensiveness. Unfortunately, these methods’ simulated traffic may not
model the variability and unpredictability inherent in actual network conditions [6, 43], and thus
may fail to capture the nuances of real-world traffic exchange.

Machine learning-based approaches adopt techniques for time-series forecasting to learn sig-
nals in a given continuous stream of input. These models isolate the fine-grained variations in one
or more traffic attributes and produce data statistically similar to real-world traffic, further rein-
forced by offering improved performance when used in downstream ML-based tasks (e.g., service
recognition, anomaly detection). Additionally, this data can have arbitrary length, as the gener-
ating model learns from only a single or small set of continuous traffic attribute values. Early
ML-based traffic attribute generators include Lin et al. ’s Doppel GANger which uses a generative
adversarial network (GAN) to produce sequences of single traffic attribute values [30], and Yin et
al.’s NetShare which builds on Doppel GANger to output more expressive sets of aggregate traffic
attributes (e.g., duration, packet count), or more comprehensive sets of packet-level header field
values (e.g., time-to-live [TTL], protocol flags) [46]. Zhang et al. ’s NetDiff uses both diffusion and
transformers to try to better encode patterns in traffic attributes and use this encoding to better
inform generation, specifically for mobile network data [48]. One limitation of these models is
that when modeling raw packet contents, they only support learning and generating values from

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

https://github.com/noise-lab/netssm

6:4 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Layer 3 and below (plus transport-layer port numbers) in the OSI model. Thus, they cannot model
interactions or attributes in stateful protocols (e.g., TCP).

2.2 Raw Packet Generators

Raw packet generators use simulation or machine learning to output synthetic network traffic in
the form of verbose, raw PCAPs. The same simulation-based approaches used to produce traffic
attributes can be used to produce raw traces, where the simulated communication between nodes
is collected (versus summarized to yield traffic attributes) and written to a trace. Unfortunately, the
same shortcoming in expressiveness also exists for these simulators for this output granularity.
Machine learning-based approaches train on raw packet data and generate the byte-level values
that comprise the packets of a session. Whereas traffic attribute generators are designed to learn
from and capture variations in values over time implicit in a given sequence, raw packet gener-
ators learn from and capture the inter- and intra-packet relationships contained in a trace’s raw
contents, from which traffic attributes can be extracted. Operating at the packet level, these gener-
ators can model protocols at any layer. Evaluated under the same metrics, raw packet generators
have comparable or better statistical similarity and downstream ML-task performance than traffic
attribute generators, and their verbose PCAP format may be more versatile for later analysis and
feature extraction. For example, Jiang et al. ’s NetDiffusion uses a text-to-image diffusion model
trained on image representations of network traces to generate images with specific traffic char-
acteristics and are convertible back to PCAP form [24]. Qu et al. ’s TrafficGPT is a transformer
decoder that trains on, and produces tokens corresponding to raw bytes of PCAP traces [35]. A
key drawback to existing diffusion and transformer-based raw packet generators is their relatively
short limit in training context and output length (i.e., learning from and producing PCAPs with
maximum lengths of 1,024 packets for NetDiffusion and 113 — 128! packets for TrafficGPT), which
may fail to capture target events in exchanged communication. Most recently, Chu and Jiang et
al. proposed using SSMs, specifically Mamba-1, to generate synthetic traces [7]. Our work im-
proves on this effort by using the Mamba-2 architecture (allowing for larger modeled state and
faster training), training on longer contexts (100,000 versus 50,000 tokens), producing multi-flow
traces (versus only single-flow) and presenting more detailed evaluation of generation quality.

3 State Space Models for Network Traffic Generation

Much communication between networked devices is stateful, and these exchanges may span long
sequences of packets for multiple steps (e.g., setup, payload download, teardown). Our choice of
Mamba [9, 12], a line of selective structured SSMs, accommodates these characteristics. In this
section, we provide background on SSMs, specifically, the Mamba model (Section 3.1), and compare
Mamba against the existing approaches in raw packet generators (Section 3.2).

3.1 Background: State Space Models and Mamba

SSMs are probabilistic graphical models built on the control engineering concept of a state space [26].
Similar to Hidden Markov Models, SSMs model discrete observations over time, but use continu-
ous, as opposed to discrete, latent variables. SSMs encode a running hidden state representative of
prior observed context of input using recurrent scans, and use this state to calculate an output for a
given unobserved input. Specifically, SSMs use first-order ordinary linear differential equations to
capture the relationship (output) between unobserved variables (state) and a series of continuous
observations (input), irrespective of time (i.e., is linear time-invariant [LTI]). Unfortunately, SSMs

!Using packet lengths of 94/106 tokens from our evaluation case studies, for TrafficGPT’s max generation length of 12,032
tokens.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:5

suffer from the same pitfall as other recurrently updating models, in that over time, information
about data earlier in an input becomes increasingly compressed in the hidden state. This leads
to the “vanishing gradient,” where the model can no longer recall dependencies between inputs.
Prior works by Gu et al. and Voelker et al. remedy this challenge by fixing the state matrix used
in SSMs, resulting in improved model performance for recalling long-range dependencies [13, 45].
Follow-up works by Gu et al. provide additional improvements to the SSM, improving training
efficiency for practical use via convolutional kernel (S4 [14]) and sequence modeling performance
via a selection mechanism and a fixed state matrix (Mamba, Mamba-2 [9, 12]).

Specifically, Mamba builds on S4, and additionally implements two modifications to the general
SSM that provide structure and selection. It implements structure by replacing the general SSM
state matrix (typically randomly initialized) with a HiPPO matrix [13], which enforces a probability
measure for dictating how the SSM state is compressed. This, in effect, remedies the vanishing gra-
dient and improves the Mamba SSM’s ability to model long-range dependencies in sequences. For
selection, the general LTI SSM lacks expressiveness, i.e., all discrete inputs compressed in the state
affect the state with equal weighting. In language modeling, this prevents semantically important
“keywords” from more heavily influencing the SSM state and developing a better understanding
of input. Mamba improves expressiveness by removing the LTI quality of the general SSM and
makes the model time-variant, in which the state is calculated using learned (rather than fixed)
functions of the inputs. Mamba’s structure and selection modifications to the general SSM archi-
tecture provide competitive performance against conventional transformer-based approaches for
sequence modeling, with better scaling (linear versus quadratic).

3.2 Why Mamba?

We select the Mamba architecture because it is inherently suited to the nature of network data,
specifically the stateful nature of a large portion of network traffic (e.g., TCP flows). Communi-
cation between hosts often explicitly depends on the sequential exchange of packets to ensure
correct data assembly and to maintain the connection. This can be mapped to the recurrent qual-
ity of the state-space architecture, where the model sequentially updates the hidden state on each
new input. In our use of Mamba for synthetic trace generation, this enables NETSSM to effectively
learn from and produce sessions composed of multiple flows. In contrast, prior traffic attribute and
raw packet generators can only operate within the scope of single-flow sessions.

The architecture’s convolutional kernel further complements the network domain by enabling
updates to be performed in parallel, allowing the model to train on substantially long communi-
cation while still implicitly capturing sequential dependencies. As such, Mamba is a much more
“natural” fit for modeling network data compared to prior raw packet generators. Diffusion-based
approaches require abstracting network data to a different domain (i.e., images in NetDiffusion),
and further generate traces based on signals from the entire trace, neglecting the sequential deliv-
ery of network traffic. Transformer-based models likewise learn input semantics in a completely
parallel fashion, where attention is calculated per token of a sequence, against all other tokens in
the sequence simultaneously, also not strictly sequentially. The completely parallel computation
nature of either approach is also resource-intensive. NETSSM can generate traces roughly 10x
longer than NetDiffusion and 78x longer than TrafficGPT. This is a key improvement, allowing
NETSSM to capture flow-state-dependent sessions events that manifest only after substantial setup
has occurred, and thus may not be captured with other models. For instance, in video streaming
traffic (generated/evaluated in Section 5.3.2), a flow’s representative state for downloading au-
dio/video segments may not be reached until after a few hundred or thousand packets.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:6 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Pre-processing Tokenization Pre-training Generation
<|netfiix|>
160 n tokens
5 Length
NetSSM Synthetic
Ground Truth e) — - S PCAP
PCAPs eed
244
. <|label|> ... <|pkt|>
<lpkt|> Mamba-2
Fig. 1. Overview of the NETSSM pipeline.
4 NetSSM

Motivated by shortcomings in existing synthetic network data generators, and strong alignment
with the operation and capabilities of SSMs and the qualities of networked communications, we
present NETSSM, a new raw packet generator. NETSSM uses the Mamba-2-backbone, and is trained
the raw byte contents of packets, to synthesize packet traces. Figure 1 provides an overview of the
NETSSM pipeline, and we provide details for each pipeline step below.

4.1 Pipeline Overview

4.1.1 Pre-processing Networking Data. Input to NETSSM are sequences of the raw bytes which
comprise the packets in a session trace. Specifically, NETSSM parses the Packet Data field of each
packet record in a PCAP file [16] to a representative format that aligns with the token-based,
sequence generation objective of the Mamba SSM.

Tokenization. We define a custom tokenizer using Huggingface Tokenizers [33] that one-to-one
maps the decimal values of the raw bytes comprising each packet to a corresponding token ID in
range [0, 255]. In this way, NETSSM reasons about the raw contents of networking traffic close to
its original form. This differs from prior work where network data is represented/tokenized at the
flow level [29], as a mix of packet-level and flow attributes [35], or created using a tokenization
algorithm that may map raw bytes to tokens using logic suited to a different domain (i.e., Word-
Piece from NLP) [32]. Our tokenizer also defines label special tokens (e.g., <| facebook | > <|meet | >,
<|netflix|>)and a packet special token (<|pkt|>) to allow NETSSM to differentiate between traf-
fic dynamics of different workloads, and packet boundaries in sessions.

Creating training data. We extract input to NETSSM from labeled (i.e., the workload/service
type of collected traffic is known) collections of PCAPs based on the desired modeling granular-
ity, i.e., single-flow or multi-flow sessions. For single-flow sessions, we use pcap-splitter [38]
to first split the original PCAP into multiple PCAPs, each corresponding to a single comprising
flow based on connection (i.e., five-tuple: source IP, source port, destination IP, destination port,
IP protocol). No pre-processing is needed for multi-flow sessions (i.e., captures containing multi-
ple connections/five-tuples). We then use our custom PCAP parser written in Go, which performs
the following tasks: (1) converts the raw bytes comprising each packet in a PCAP to a sequence
of 8-bit decimal values (i.e., value € [0, 255]) in string form, (2) delimits each string form packet
with <|pkt | > special tokens, and (3) prepends the PCAP’s corresponding label special token to the
string. Finally, we use the custom NETSSM tokenizer to tokenize the parsed, string-based PCAP
data to a format consumable by NETSSM, producing one input sample for each PCAP in a dataset.
Our parser currently supports processing both IPv4 and IPv6 packets, the TCP and UDP trans-
port protocols, and the DNS application protocol. The parser can easily be extended to additional
protocols or workloads by simply adding a new corresponding processing function.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:7

4.1.2 Pre-training NetSSM. Training data are fed into NETSSM to learn the semantics of packets,
and correspondingly, flows and sessions. Specifically, NETSSM treats generating network traffic
data as a self-supervised sequence generation problem. During training, NETSSM minimizes the
cross-entropy loss function, which measures how well the predicted probabilities for a token at a
specific index match the correct token. Because this learning objective is irrespective of the input
used, NETSSM is easily extensible to learning the semantics of any protocol or workload. For our
experiments with NETSSM, we train using a batch size of one, which allows each input/training
sample to be 100,000 tokens in length (the maximum length supported for our experiment setup).
This maximizes the length of packet sequences our model learns from (i.e., context length), with
100,000 tokens corresponding to a context of at least 943 packets (when using different packet
representations from our various case studies).

4.1.3 Generating Synthetic Traces. Trace generation requires two arguments: a generation seed
and length. The generation seed matches the format of NETSSM’s training samples — a label special
token followed by a sequence of any number of full or partial packets represented by their raw-
byte contents in decimal form (e.g., <|amazon|> 188 34 203. .. <|pkt|>). The seed is used
to “prompt” NETSSM for generation, equivalent to the “start token” or string in NLP generative
models. The generation length dictates the length of output (in tokens, or optionally, packets)
that NETSSM should generate. NETSSM’s packet model encodes the generation seed to its latent
representation before passing it first through the actual SSM linear system, and second the softmax
function. This results in a set of probabilities each token (i.e., byte value) has of being selected as
the generation candidate. On each generation step, the single highest probability token is both
output by NETSSM and used to update the existing latent representation, becoming the input
for the next round of generation. This procedure continues until the given generation length is
satisfied. NETSSM then constructs the intermediate synthetic trace, concatenating the sequence of
generated packets represented by their tokenized raw bytes in decimal format, and prepending the
label special token. The pipeline concludes with a simple script which converts the token-based
trace representation to a complete PCAP binary, with the option to assign packet inter-arrival
times (IATs) to packets by sampling from the IAT distribution of a given ground truth capture
(presumably from the same traffic class or workload).

4.2 What NetSSM Does and Does Not Do

NETSSM generates traces of raw packet communication in the form of PCAPs. These traces can be
of arbitrary, user-specified length, and may be comprised of either a single flow (i.e., two endpoints)
or multiple flows (i.e., more than two endpoints).

These traces capture the sequential characteristics of packet communication (and thus, may act
as a weak proxy for time). Unfortunately, NETSSM does not extract or parse, and hence, does not
learn from and autoregressively generate, the timestamp/IAT values for each packet. We provide
additional discussion on this shortcoming and future directions for addressing it in Section 6.

5 Evaluation

We evaluate the quality of synthetic data produced by NETSSM through five analyzes: (1) statisti-
cal similarity between generated and real traffic, (2) downstream utility of generated data towards
training and improving ML-for-networking models, (3) semantic similarity between generated and
real traffic, (4) protocol compliance between generated and real traffic, and (4) analysis of memoriza-
tion in synthetic NETSSM traffic. Previous traffic attribute and raw packet generators are measured
using metrics of statistical similarity and downstream performance. We introduce semantic sim-
ilarity and protocol compliance as additional aspects that should be considered when evaluating

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:8 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Table 1. Overview of datasets used to train and evaluate NETSSM.

CONTENT TYPE S1ZE

DATASET SOURCE EvALuATION
CLASSIFICATION # SUB-CLASSES Raw # CAPTURES
Bronzino et al. [4] §5.1,5.2,5.4 Video Streaming 4 6.36 GiB 273
Multimedia Traffic MacMillan et al. [31] §5.1,5.2,54 Video Conferencing 3 17.36 GiB 339
Jiang et al. [25] §5.1,5.2,5.4 Social Media 3 5.40 GiB 151
Netflix Streaming Bronzino et al. [4] §5.3,5.4 Video Streaming 1 216.36 GiB 5,882
YouTube Streaming ~ Gutterman et al. [15] §5.3 Video Streaming 1 2.06 GiB 619

synthetic network data models or systems. Finally, we perform analysis on NETSSM’s output and
show that it is learning to mimic, not memorize, patterns in network data used during training.

5.1 Statistical Similarity

We first evaluate NETSSM with conventional metrics of statistical similarity used to evaluate prior
traffic generators, which assess the byte-wise matching between generated synthetic traces and the
ground truth training traces. Specifically, we train a NETSSM model on single-flow traces (i.e., com-
prised of a single connection/five-tuple) collected from various types of multimedia traffic. We
examine the single-flow granularity so that we can provide direct comparison against prior work,
which all evaluate at this level. After training, we generate synthetic traces and compare them
to their ground truth counterparts. We find that NETSSM’s synthetic traces exhibit high statisti-
cal similarity to real data at the content level (byte-wise comparisons), outperforming previous
synthetic network trace generation methods in various statistical metrics.

5.1.1 Setup. We evaluate the statistical similarity of traces produced by (1) a base NETSSM model
that trains on and produces continuous sessions, and (2) a fine-tuned version of the base model
that generates packets comprising distinct flow stages (e.g., TCP teardown, characterized by ACK
and FIN packets, or data transmission, characterized by PUSH and ACK packets). Here, we wish to
examine if additional fine-tuning can yield performance improvements, particularly in generating
these distinct components of networked communication. Fine-tuned models could be especially
useful for applications requiring only subsets of a trace to study key network behaviors (e.g., ses-
sion termination indicators). We detail the setup for either model below.

Base model. We train our NETSSM model for single-flow trace generation using the Multime-
dia Traffic dataset outlined in Table 1. We first pre-process the data using pcap-splitter [38],
splitting PCAPs into their comprising single-flow PCAPs based on five-tuple, and parse them into
the string representations of their raw bytes in decimal form, as described in Section 4.1.1. We
fix each packet to be represented by 94 tokens, corresponding to the maximum practical lengths
of the Ethernet (14 bytes), IPv4 (20 bytes excluding options), and TCP headers (60 bytes includ-
ing extensions). We train the NETSSM model for this evaluation on TCP traffic only, and do not
consider TCP payload, as this data is becoming increasingly encrypted [11, 20, 23] and would be
noise our model would not learn from. Next, we create a custom tokenizer following the configu-
ration described in Section 4.1.1, defining 10 label special tokens corresponding to the 10 distinct
applications in our dataset. We then tokenize all string representations resulting from splitting our
data to their single-flows resulting in a final dataset of 27,839 samples. Finally, we pre-train the
single-flow packet NETSSM model on the created dataset using a single NVIDIA A40 48GB GPU
for 30 epochs with a gradient clip value of 1.0 and default AdamW optimizer with learning rate of
5x 107*. We use the same configuration as the smallest publicly available 130 million parameter
pre-trained Mamba-2 (dimension of 768, 24 layers), but instead use our custom tokenizer. We gen-
erate traces using the process detailed in Section 4.1.3, producing a corresponding synthetic trace

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:9

Table 2. Byte-wise statistical similarity. Across generators and data granularities, NETSSM traces are most
statistically similar to real traffic (divergence/distance metrics > 2x lower versus the next best method).

TRAFFIC ATTRIBUTE-LEVEL (AVG. JSD) | HEADER-LEVEL |
GENERATION METHOD
SA DA SP DP PR AVG. AvG.JSD Avc. TVD Ave. HD
Random Generation (flow statistics) | 0.71 0.71 0.63 0.63 0.47 0.63 ‘ - - -
Random Generation (raw packets) — — — — — — 0.82 0.99 0.95
NetShare 0.14 0.19 0.29 0.25 0.04 0.18 ‘ — — —
TrafficGPT 0.13 0.16 0.17 0.23 — 0.17 = = =
NetDiffusion” 0.00 0.00 0.14 0.17 0.06 0.06 ‘ 0.04 0.04 0.05
NETSSM (base) 0.12 0.11 0.10 0.11 0.00 0.09 0.02 0.02 0.02
NETSSM (fine-tuned) 0.06 0.05 0.05 0.06 0.01 0.05 ‘ 0.02 0.01 0.02
*As reported in [35]. T Post-generation correction applied.

for each real trace used in training. Specifically, we use the first packet from the real training trace
in tokenized form, along with its corresponding label as the seed. We set the generation length
as the number of tokens needed to represent the total packets in a corresponding real trace. This
ensures the generated trace contains the same number of packets as the real trace, providing a
consistent basis for evaluating the synthetic trace’s statistical similarity to the real data.
Fine-tuned model. We train the fine-tuned NETSSM model by first creating sub-datasets from
the original dataset described above that isolate the packets relevant to specific stages of a flow’s
lifetime. These sub-datasets focus on distinct phases of network communication (e.g., session ini-
tiation, data exchange, session termination). We use these phase-specific data to fine-tune the
base 30-epoch single-flow NETSSM, using the same next-token prediction objective as the original
model but with phase-specific packets as input. This allows the model to capture the intra-packet
and flow dynamics unique to each phase, leading to improvements in both the quality and flex-
ibility of output. When generating data with the fine-tuned models, we chain outputs from one
phase-specific model to the next. Specifically, the final packet produced by the handshake model
serves as the seed for the subsequent data transmission model, while the final packet generated
by the data transmission model acts as the seed for the subsequent session teardown model.
Baselines. We compare the two NETSSM variants against three prior works: NetDiffusion, Traf-
ficGPT, and NetShare. We also evaluate against two random generations of flow statistics (uni-
formly sampled random values across valid attribute ranges, e.g., IP addresses/ports, and proto-
cols) and raw packets (random assignment of 1, 0, -1 to indices in the nPrint packet format [21])
to serve as benchmarks for poor fidelity. Specifically, we train new NetShare and NetDiffusion
models on our Multimedia Traffic dataset (for TrafficGPT, we rely on the paper’s reported results
as it is closed source), and use these models to generate corresponding synthetic traffic attributes,
or raw PCAPs, based on each capture in the ground truth dataset.

5.1.2 Results. We evaluate NETSSM’s generation fidelity by analyzing the statistical similarity
between its synthetic data, and each of these synthetic data’s real, ground truth counterpart, con-
sistent with prior evaluations [24, 30, 35, 46]. Specifically, we calculate three distributional dis-
tance metrics: Jensen-Shannon Divergence (JSD), Total Variation Distance (TVD), and Hellinger
Distance (HD), where lower values indicate closer alignment to the ground truth. We calculate
these metrics at two levels: (1) traffic attribute-level for direct comparison against all prior works,
and (2) header-level for comparison against NetDiffusion. We compute traffic-attribute level met-
rics for the fields of source and destination IP addresses and ports (SA, DA, SP, DP) and IP protocol
(PR). Table 2 presents the overview of statistical similarity for each generator and level.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:10 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Traffic attribute-level similarity. We extract the ground truth traffic attributes from the ground
truth traces, and compute the distance metrics between these values and their synthetic counter-
parts. Specifically, for NETSSM and NetDiffusion, we extract traffic attributes from each generated
PCAP corresponding to a ground truth capture. NetShare directly generates traffic attributes, and
thus does not require additional parsing. For brevity, Table 2 shows only the average JSD for each
field, though the TVD and HD are highly similar (£0.02). Between the base and fine-tuned variants,
NETSSM achieves the best or second-best average JSD in all fields.

Header-level similarity. We compare statistical similarity at the header level by calculating the
three distance metrics across each bit position in the nPrint [21] representation of a trace, for all
packets’ TCP headers. We exclude NetShare (only generates a subset of header fields) and Traf-
ficGPT (closed source preventing further analysis) from this evaluation. NETSSM consistently out-
performs NetDiffusion in all metrics with distances as low as 0.01 in the fine-tuned NETSSM vari-
ant. While the distance delta between NetDiffusion may appear only marginal, we re-emphasize
that the comparison is performed after post-generation correction in NetDiffusion is applied. To il-
lustrate, some NetDiffusion-generated traces in this experiment were unparseable by packet analy-
sis tools prior to applying the heuristic-based fix. In contrast, NETSSM requires no post-generation
correction and yields better statistical similarity.

5.2 Downstream Utility

We examine the performance of downstream ML models trained on synthetic network data to
evaluate this data’s quality in practical application. Specifically, we train two types of classifiers
that focus on (1) application-level classification (e.g., YouTube, Amazon) and (2) service-type-level
classification (e.g., video streaming, web browsing).

5.2.1 Setup. To test the utility of synthetic data in augmenting downstream model training, we
create downstream training datasets comprised of packet header-level features determined via
nPrintML [22]. We extract these features from both the ground truth Multimedia Traffic dataset,
and three sets of synthetic data generated by NETSSM, NetDiffusion, and NetShare models trained
on this dataset. Each downstream training dataset uses different mixing rates that represent the
proportion of synthetic data used to replace original real data in the dataset. We create a new
dataset at each 10% inclusive increments, resulting in 33 downstream training datasets (11 for
each model). For example, a downstream training dataset with a 20% mixing rate contains 80%
real data, and 20% synthetic data. We train three different types of ML classifiers (Decision Trees
[DT], Random Forest [RF], and Support Vector Machines [SVM]) on these downstream datasets,
resulting in a corresponding 33 models. Finally, we test each models’ performance on held out
samples of completely real, and completely synthetic data to assess their performance and gen-
eralization across different training and testing environments. In each scenario, we analyze if a
generator’s synthetic data can maintain and/or improve classification accuracy when mixed into
the training data at various rates. Notably, because NETSSM never reproduces any trace identi-
cally (Section 5.5) even synthetic flows that are close to real flows in the downstream test set do
not constitute train-test leakage, but instead act as supplemental samples for downstream models.

5.2.2 Results. Figure 2 shows the accuracy of RF models trained on the mixed downstream datasets
for application and service-type-level traffic classification, and tested on both completely real and
synthetic data. Comprehensive results for other model types, and models trained on non-fine-
tuned version NETSSM data are in Appendix A. We first examine our downstream models per-
formance when tested on completely real data. Figures 2a and 2b visualize the results. Models
trained on NETSSM data maintain consistently high classification accuracy in both the absolute
and relative cases (as compared to those trained on NetShare and NetDiffusion data), across all

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:11

App Level; Tested on Real Data Service Type Level; Tested on Real Data App Level; Tested on Syn Data Service Type Level; Tested on Syn Data

LO0 oy b sttt 1.00 o= 10074 pme eSS
A Acc/ trai i A Acc: train gn _, —A—h—A—k— —A—A i g n
100%syn data: 0.818 | v,amy,.w«sw
t 0.75 -
& | =
g ! 0.50 g
< | < |
i | —+— RF,NETSSM
] 0.25 0.25 1 RE, NetDiffusion
—4— RF, NetShare
0.00 0.00 0.00
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Mixing Rate Mixing Rate Mixing Rate Mixing Rate

(@ (b) (©) (@

Fig. 2. Performance of random forest classifiers trained on mixed real/synthetic data. Models trained
on NETSSM data perform best across baselines. Shading denotes the delta between the next best baseline.

mixing rates, even when the training set consists entirely of synthetic data. We observe substan-
tial accuracy gains of ~82% and ~33% for application and service-type-level classification tasks
respectively, when synthetic data constitutes 100% of the training set. Testing our downstream
models on completely synthetic data yields similar results, as shown in Figures 2c and 2d. Models
trained on NETSSM data consistently achieve high accuracy; at least 0.94 for application-level clas-
sification and 0.99 for service-type-level classification, regardless of mixing rate. This represents
improvements of ~86% and ~47% in either task over the next best synthetic data generator.

5.3 Semantic Similarity

The existing measures of statistical similarity and downstream utility for network data genera-
tors are largely motivated by how well these synthetic data can improve downstream ML-for-
networking model performance. However, raw packet generators introduce new challenges not
captured by these metrics. While a synthetic trace may have both high traffic attribute and header-
level similarity, these measures do not reflect the longitudinal quality of its contents. To illustrate,
consider a synthetic trace that contains communication between two desired endpoints, but the
contained setup and progression between flows is incorrect or out-of-order. Here, while the five
attributes we evaluate in Section 5.1.2 (source/destination IP and port, protocol) would have high
statistical similarity, this traffic may not be representative to replace real-world data.

To this end, we evaluate NETSSM’s ability to produce semantically similar synthetic network
traffic. Specifically, we generate both single-flow and multi-flow (i.e., comprised of more than one
connection/five-tuple) Netflix and YouTube video streaming traffic using new NETSSM models
further detailed in this section. We select the workload of video streaming as it contains well-
defined patterns which can easily be deemed correctly/incorrectly modeled. We choose to inspect
the multi-flow granularity to examine if the synthesized inter-flow interactions may positively in-
fluence the overall fidelity of the trace, and for novelty — no existing traffic generator can generate
multi-flow traffic. We then evaluate these traces to examine whether they capture implicit charac-
teristics for a given networked communication workload. To do so, we examine communication
between end hosts and synthetic Netflix/YouTube video streaming servers in our generated traces,
analyze the attributes of their downloaded video segments, and verify that they reflect the quali-
ties found in real traffic (Section 5.3.2). In our generated multi-flow traces, we further sequentially
visualize their segment sending patterns and find that NETSSM’s synthetic data captures sending
behavior that mimics progression of a real-world video streaming workload.

In all of these analyses, it is not our goal to declaratively state that multi-flow generation is supe-
rior to single-flow generation, or vice versa. This would require further work evaluating NETSSM
on many additional workloads. Instead, we want to understand the characteristics of traffic that

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:12 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

display higher fidelity (in regard to ground truth traffic) when synthesized in either generation
granularity, to better inform how NETSSM can most effectively be used. We provide a recap and
further discussion on this point and the results of our analysis in Section 6.

5.3.1 Setup. We train four NETSSM models, two for Netflix traffic and two for YouTube traffic, on
single-flow and multi-flow traffic for Netflix and YouTube video streaming sessions, respectively.
Specifically, we use the traces collected by Bronzino et al. [4] to train our Netflix NETSSM model
and the traces from Gutterman et al. [15] to train our YouTube NETSSM model. Table 1 provides
an overview of both datasets. We also note that the video streams contained in our Netflix traces
exclusively use TCP-based Dynamic Adaptive Streaming over HTTP [40] (DASH), while the video
streams in YouTube traces use both TCP and QUIC/UDP-based DASH.

Training. For the multi-flow models, we keep all captures in their original, multi-flow state (i.e., do
not split captures to their comprising single-flows, keep both UDP and TCP traffic), but perform
all other pre-processing identically as described in Section 5.1.1. This results in training datasets
of 5,882 and 619 multi-flow samples for Netflix and YouTube, respectively. For the single-flow
models, we follow the procedure detailed in Section 5.1.1 (splitting the original, multi-flow traces
into their numerous individual flows), but also filter out training samples comprising fewer than
10,000 packets (a value chosen for reasons described in the following paragraph). We do this to
ensure our single-flow models only learn from the flows which likely correspond to video segment
downloads, to provide a fairer comparison against the multi-flow models. This results in training
datasets of 5,895 and 791 single-flow samples for Netflix and YouTube, respectively. We pre-train
all models using the same training hardware, parameters and input size (samples of 100,000 tokens
in length) as described in Section 5.1.1 for 30 epochs.

Generation. We then use the models to generate synthetic, single and multi-flow video stream-
ing traffic for both Netflix and YouTube. We begin the process of creating prompts for genera-
tion by filtering the PCAPs in each of the four models’ respective training sets (2 applications x
2 granularities: Netflix single-flow, Netflix multi-flow, YouTube single-flow, YouTube multi-flow)
to find the captures with size > 10MB, likely representative of downloading video streaming con-
tent. We empirically observe that in the multi-flow traces, the video stream segment download
patterns described in the previous section for our training data become discernible after 2,250
packets for Netflix, and after 500 packets for YouTube. In the single-flow traces, we found these
offsets to be 200 and 25 packets for Netflix and YouTube respectively. Accordingly, we use these
lengths in our prompts to “bootstrap” generation, creating prompts comprised of the tokenized
representations of the first corresponding n € {2250, 500, 200, 25} packets from the respective
ground truth trace, for each of the four application/granularity pairs. We create 400 prompts total
from 100 traces randomly selected from each of the four filtered trace sets. We then generate one
synthetic trace for each prompt, each of length 10,000 packets, for a total of 400 PCAPs (100 for
each granularity/application pair). Appendix Section C details the generation hyperparameters
for each granularity/application pair. We choose to generate only 100 synthetic traces of 10,000
packets each to balance evaluating NETSSM’s generation expressiveness over a sufficiently long
context, and computational constraints — each trace takes approximately 20 minutes to generate,
making full-dataset evaluation prohibitive (generating all synthetic traces for our 400 prompts
took approximately five and a half days). In our below analyzes, we compare the generated traces
against their ground truth counterparts, truncated to a matching length of 10,000 packets.

5.3.2 Results. We evaluate NETSSM’s ability to generate traces that capture the semantics and
session dynamics of application-level streaming traffic, for each of the four single/multi-flow and
Netflix/YouTube models. Concretely, for each model’s generated traces, we perform one-to-one
comparison of a synthetic trace with the original trace whose first n packets were used to prompt

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:13

Table 3. Statistical and distributional comparisons of video streaming segment downloads. Com-
parison between ground truth and corresponding synthetic NETSSM traces.

STATISTICAL MEASURES K-S TesT ANDERSON-DARLING TEST KL DIvERGENCE ~ EMD
Comp. w/ GT EVALUATION
MeaN A MEepiaN A Stp. DEV. A ‘ StAT.| P-VALUE 1 ‘ STAT. | P-VALUE T ‘ STAT. (NATS) | ‘ DisT. |

NETFLIX

NETSSM SF Raw Size 1.87 1.68 104.39 0.31 0.04 3.40 0.03 ‘ 2.06 95.04

NETSSM MF Raw Size —1.09 0.00 193.91 0.21 0.03 6.86 0.01 1.14 72.94

NETSSM SF Avg. Size/Flow —0.16 —0.30 38.73 0.36 0.55 0.98 0.46 ‘ 3.87 57.90

NETSSM MF Avg. Size/Flow —2.27 —0.66 71.73 0.22 0.82 0.29 0.73 2.67 30.75

NETSSM SF # Segments/Flow 1.69 2.00 1.93 0.48 0.19 3.00 0.06 ‘ 11.37 3.95

NETSSM MF # Segments/Flow —42.24 0.00 6.22 0.17 0.95 0.41 0.76 2.97 8.04
YouTuse

NETSSM SF Raw Size 10.89 431.01 41.76 0.57 0.19 3.10 0.02 12.01 592.42

NETSSM MF Raw Size 1.71 168.72 71.47 0.50 0.22 1.99 0.06 ‘ 10.06 430.13

NETSSM SF Avg. Size/Flow —78.43 483.07 = 1.00 1.00 = = 19.56 666.35

NETSSM MF Avg. Size/Flow —269.59 —6.92 — 0.50 0.83 - - ‘ 18.30 277.50

NETSSM SF # Segments/Flow 6.01 7.00 = 1.00 0.67 = = 24.23 7.30

NETSSM MF # Segments/Flow 0.57 0.00 — 0.50 1.00 — - ‘ 11.45 4.04

Values for the statistic, p-value, and distance are the median values. GT := ground truth, SF := single-flow, MF := multi-flow.

its generation, and compare the distributions of their quantities and sizes. Specifically, we infer the
DASH video content segments found in both the ground truth Netflix/YouTube traces, and the syn-
thetic traces generated by NETSSM. We use two different definitions of a segment for Netflix and
YouTube, respectively, both matching the definition provided in the corresponding original work
for either dataset. For Netflix, we initialize a segment for any uplink packet with non-zero payload,
whose destination IP address corresponds to an address received in answers to DNS requests for
Netflix domains (i.e, nflxvideo, netflix, nflxso) sent at the beginning of a trace. Subsequent
downstream traffic increments the size of the segment. For YouTube, we initialize a segment for
any uplink packet with payload greater than 300 B, and further only consider it an audio/video
segment if it has a final size of at least 80 KB. Notably, Bronzino et al find that Netflix traffic
“downloads, on average, four video segments and one audio segment” at a given time using many
parallel flows, while Gutterman et al. report that “for most of [their] dataset, for a given session,
audio and video chunks are transmitted from one server.”

We extract these segments from the ground truth real, and synthetic data. To extract segments
from synthetic Netflix traces, we use the IP subnets for Netflix domains found in the ground truth
addresses to filter for video stream content, as our generated traces do not contain the DNS payload
to perform the same procedure. All other extraction logic follows as previously described. We
extract YouTube segments from our synthetic traces exactly as previously described. We then
analyze the one-to-one differences in video segment download behavior between synthetic traces,
and their corresponding real-world trace used to prompt generation.

Segment Attributes. We compare the distributions and summary statistics for segments in regard
to 1) raw sizes of all downloaded segments 2) average segment size per flow, and 3) number of
segments downloaded per flow, for each ground truth and NETSSM-generated trace pair, for each
generation granularity and application. Table 3 provides the summary statistics and results of anal-
ysis using various standard statistical measures — the two-sample Kolmogorov-Smirnov (K-S) and
Anderson-Darling tests, Kullback-Leibler (KL) divergence, and the earth mover’s distance (EMD)
- for each evaluation. In the Mean A and Mepian A summary statistics, A := mediangr (eval) —
medianGeni(eval), where i € [1,100], and GT and Gen denote ground truth data and generated

data, respectively. To contrast, Stp. Dev. A := median (UGTi(eval) - UGeni(eval)) wherei € [1,100].
Across statistical measures, smaller values for the statistic or distance and larger p-values suggest

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:14 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

higher distributional similarity. We provide additional visualizations that compare other sampled
synthetic/ground truth distribution examples in Appendix B.

We observe that as an aggregate across all Netflix traces, NETSSM’s synthetic traces of both
granularities contain segment downloads whose distribution patterns are similar to the ground
truth. Comparing single and multi-flow traces, we observe that multi-flow traces are more similar
to their ground truth counterparts. While the similar summary statistic values for either granu-
larity are largely comparable (except for Stp. DEv. A and number of segments downloaded per
flow), the multi-flow traces have markedly more similar distributions to the ground truth than
the single-flow traces. This is evidenced by the generally lower K-S and Anderson-Darling test
statistic and EMD distance values, suggesting large overlap, with additionally larger p-values, in
all evaluations except for raw segment size. In the raw segment size evaluation, NETSSM traces of
either generation granularity have low median p-values, with the corresponding statistic for the
K-S test, KL divergence, and Anderson-Darling test being low, low, and high, respectively. This
suggests that while the general distribution for the traces may be similar, there exist differences in
tail values for segment sizes that the traces do not reflect. This is likely explainable by the nature
of the training data. Because downloading video segments is a largely stable workload across the
network conditions in our dataset, our models learn to generate traces that predominantly reflect
this norm, with tail segment download behavior less prevalent.

Examining NETSSM-generated YouTube traces, we observe less positively conclusive results.
We omit calculating the standard deviation and two-sample Anderson-Darling test for the aver-
age segment size and number of segments per flow, as the ground truth behavior of YouTube traffic
is downloading only from one server. We observe in single-flow generation that for both raw seg-
ment size and average segment size per flow, the mean A is close to, or smaller than the ground
truth respectively, while the median A is consistently larger. This suggests that in this granularity
the majority of downloading flows NETSSM generates typically download segments whose sizes
are larger than normally observed in the ground truth, but whose remaining downloaded segments
are substantially smaller. Multi-flow generation displays similar behavior in size of raw segments,
but appears to generally synthesize flows whose average segment size is very close to the ground
truth. Unfortunately, it at times appears to “hallucinate” numerous outlier flows which download
significantly smaller segments, straying from typical YouTube behavior (sequential segment down-
loads using only a single flow/from one server) and resulting in the substantially negative mean A.
The remaining statistical measures are similarly less conclusive, likely for the same reason. Though
we can attempt to “guide” NETSSM towards generating traces with only a single dominant flow
via generation hyperparameters (i.e., influencing token selection), these mechanisms do not en-
sure that this is adhered to (in either generation granularity). We expect enforcing this constraint
on NETSSM would significantly improve its performance for modeling YouTube streaming traffic,
and other predominantly single-flow workloads.

Sequential Sending Patterns. We next evaluate if the multi-flow traces generated by NETSSM in-
deed capture the video segment send/download patterns found in real traffic. This allows us to
determine if the events “behind” the previous distributional analysis are real-world consistent. To
do so, we plot the throughput of traces based on their comprising flows, as a function of packet
order. We do this to present a more direct evaluation of whether NETSSM meaningfully models
networked communication over the span of its generation, as timestamps are not truly gener-
ated by NETSSM, but assigned post hoc (Section 4.1.3). For a given trace, we partition the trace
into slices of 100 packets. We then assign the packets in each slice to their corresponding five-
tuple flow, and sum the size of all packets in a flow to obtain the throughput in kilobits/slice for
that flow. Figure 3 visualizes this throughput for both the ground truth (truncated to a matching

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:15

””” Prompt
g 1000 g 1000
3 3
5 750 5 750 o N
o (=% *
£ 500 “ o £ 500
5 * - 2 ., 4o s W * ,f:“u:- A N
= = o - ”,
S 450 S S o & 2 250 ..—-r: AL ¥ ¥ . *,,;:3 >
i a5 ¥ ViaTee * v "
0 A, St e P S o vy v"?"v el ¥ & 0 2o Catoume ¥ 4 By LI LR
0 20 40 60 80 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
(a) NETSSM-generated Netflix trace. (b) Ground truth Netflix trace.

Fig. 3. Comparison of throughput (synthetic vs. corresponding ground truth trace). Each point’s
color/shape combination denotes a unique flow. Color/shape combinations are not shared between 3a/3b.

10,000 packets) and generated traces for a sample Netflix trace pair. Appendix Figure 4 contains
additional visualizations for either application. In both NETSSM-generated Netflix and YouTube
traces, we see dominant flows that appear empirically similar to the behavior described in the
original works (typically three to five active flows for Netflix, one for YouTube). Unfortunately as
previously mentioned, a notable amount of small “hallucinated” flows for YouTube traffic are also
present, resulting in these traces deviating from the ground truth behavior.

We quantify our analysis by comparing the aggregate throughputs of the generated and ground
truth pairs. We compare aggregate throughput to allow communication between synthetic five-
tuples (i.e., not present in the ground truth) that reflect the correct sending/receiving behavior of
video streaming traffic to count in analysis. We calculate aggregate throughput by summing the
throughput for each flow in a slice, for all slices. We next calculate two metrics across all syn-
thetic/ground truth pairs: (1) the median Pearson correlation coefficient (PCC) which measures
overall alignment of generated and ground truth aggregate throughput, and (2) dynamic time
warp (DTW) normalized by the length of the trace which quantifies magnitude-based error while
allowing for minor shifts in alignment. We find NETSSM’s Netflix traces have moderate positive
correlation (PCC=0.52), while YouTube traces have weak positive correlation (PCC=0.31). Both
results are statistically significant with p = 0.00. In magnitude, we find that Netflix and YouTube
are 121.45 and 69.86 kilobits off from the ground truth at any given moment. Though not optimal,
these metrics confirm that while the distribution of segment sizes and downloads synthesized by
NETSSM can deviate from the ground truth, the traffic download/sending patterns of the predom-
inant flow(s) are captured. Thus, it appears that different workloads may likely require a specific
generation hyperparameter configuration that best balances generation of realistic segment down-
load distributions alongside the correct sequential communication patterns.

5.4 Protocol Compliance

We next evaluate if NETSSM’s synthetic traces are “real-world” flow and session-compliant, assess-
ing how well they approximate legitimate TCP operation and captures TCP anomalies observed in
practice. Specifically, we compare the TCP state transitions of NETSSM-generated traces for the
combined single-flow Multimedia traffic from Sections 5.1 and 5.2 and single and multi-flow Net-
flix streaming traffic from Section 5.3, against the behavior of their ground-truth traces. We also
provide comparison against single-flow traces generated by NetDiffusion, without post-generation
corrections applied. TCP is a stateful protocol that requires accurate ordering and flag usage, adher-
ence to handshake procedures, and consistent usage of options. However, in real network traffic,
these behaviors may deviate from RFC specifications for various reasons (e.g., middlebox interven-
tions, partial captures). We parse all traces generated in the previous evaluations using a custom
TCP compliance checker that inspects flags, sequence numbers, acknowledgment numbers, and

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:16 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Table 4. TCP session compliance. Average percentage change in selected metrics as compared to the
ground truth, for multi-flow NETSSM and single-flow NETSSM and NetDiffusion traces, respectively.

MOoDEL (AVG. %/A FROM GROUND TRUTH)

METRIC
NETSSM (MULTI-FLOW) NETSSM (SINGLE-FLOW) NETDIFFUSION (SINGLE-FLOW)'

TCP session behavior

FIN seen 50.0% 9.4% 45.7%
Correct handshakes found 0.0% —5.8% -70.2%
ACK progress —1.0% —6.5% —69.6%
SEQ progress —-1.0% —8.3% —68.9%
FIN-ACK observed —4.0% 2.6% —0.5%

Anomalies or deviations in TCP behavior

Conflicting flags 57.0% 0.5% 34.4%
SAck used w/o 0K 44.0% -1.8% 15.8%
Unexpected SYN after estab. 6.0% 0.0% 0.0%
MSS outside handshake 5.0% 1.4% —2.0%
WScale outside handshake 5.0% 1.4% —2.0%
RST in established state —16.0% 0.0% —35.7%

+ No post-generation fixes applied.

TCP options. Table 4 presents the results of this checker, showing the average percentage change
in selected metrics as compared to the ground truth, for both single and multi-flow traces. We also
note several prior and concurrent works that develop model-agnostic methods to “gate” synthetic
output to be protocol compliant [17, 18]. While relevant, our objective in this analysis, measuring
NETSSM’s implicit ability to produce TCP-compliant behavior, differs.

We find that NETSSM can produce protocol compliant flows, with the rate of overall compli-
ance being higher for single-flow, as compared to multi-flow NETSSM traces. Single-flow NETSSM
traces largely follow the behavior of the ground truth, showing relatively low deltas in expected
TCP behavior, and further contain similar rates of anomalies as found in the real data. Multi-flow
NETSSM traces are less consistent, showing increased rates of some behaviors (e.g., sent FIN pack-
ets) and decreased rates of others (RST in established state). While these are indeed deviations from
the training distribution, it is difficult to definitely label this behavior as desirable/undesirable as
ground truth PCAPs are often truncated for various reasons unrelated to their comprising com-
munication (e.g., capture limits, packet loss, monitoring placement). Multi-flow traces also display
higher rates of some anomalous behavior (e.g., conflicting flags). We analyze the traces correspond-
ing to this behavior and find that NETSSM appears to at times merge consecutive flag states. With-
out post-generation correction, single-flow NetDiffusion traces often are not protocol compliant.

5.5 Memorization Analysis

We verify that NETSSM learns from, rather than memorizes its training data by performing three
analyzes on all combined single and multi-flow traces generated in our prior evaluations: (1) one-to-
one byte-wise comparison of packets, (2) an approximate matching comparison of packets based
on the normalized Hamming distance for each synthetic packet to its nearest neighbor (NN) in
the ground truth trace, and (3) a diversity ratio we define as the mean pairwise distance using
the same normalized Hamming distance for all synthetic packets, divided by the mean pairwise
distance found in the ground truth trace. Appendix Table 2 provides detailed results of our anal-
ysis. For (1), we find that on average, only 2.35% of packets are identical per trace. Further, we
verify that this percentage corresponds identically to the packets used for prompting NETSSM,
accounting for our varying prompt lengths. In all other differing packets, the average percentage
of differing bytes is 22.27%, with most differences largely manifesting in fields non-sessional to
flow state or protocol compliance. For (2), we find only 3.83% of packets lie in a 5% distance of a

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:17

ground truth packet, and that this value scales with the distance threshold. We also run this anal-
ysis across different sequential bins of indices (0-10, 10-50, and 50-100 packets) and find that the
average NN distance ranges from 0.128 to 0.223, indicating that NETSSM learns deterministic setup
phases from its prompt, but generates more varied content as the session progresses. Finally, we
compute a diversity ratio of 0.53, suggesting that NETSSM produces more closely clustered sam-
ples than ground truth traffic. For applications requiring broader behavioral coverage, generation
hyperparameters can be tuned to balance fidelity and diversity.

6 Discussion, Limitations, and Future Work

Improving timestamp generation. Currently in NETSSM, timestamps are not learned, but sam-
pled from the distribution of a ground truth capture. This is not ideal for two reasons. First, it
does not ensure sequential-temporal correlated key events are accurately represented in synthetic
traces. Timestamps assigned to packet may fail to faithfully reflect the true dynamics of the key
events which they correspond to. For instance, if NETSSM was trained on traces containing com-
munication between three endpoints: two on the same local network and one geographically dis-
tant, higher latency timestamps of packets to/from the third endpoint could be assigned to com-
munication between the local endpoints, and vice versa. Second, it requires a NETSSM user retain
real data to sample from. This can be especially limiting in exporting trained NETSSM models in
environments where the sharing of any data (either raw or derived) is not allowed. In such cases,
NETSSM can still generate PCAP files without sampling timestamps, but the utility of the resulting
synthetic traces may substantially decrease, particularly and intuitively when modeling workloads
and/or behaviors where time is a large, dependent variable (e.g., buffer drain in video streaming).

Ideally, timestamps should be modelled in parallel with, and conditionally based on, flow or
packet interactions that arise during generation. A number of challenges makes this particularly
difficult. First, the modalities of packet contents (discrete values for bytes) and timestamps (con-
tinuous values for duration since epoch) are not the same, and thus cannot be simultaneously
modeled using the same objective function. During experimentation, we confirmed this challenge
when we attempted to modify NETSSM to contain an additional regression modelling component
that took as input the most recent generated two consecutive packets, and output the packet IAT.
Despite training this component under various custom loss functions, we were unable to obtain a
model that accurately captured IATs. Instead, the generated IATs roughly regressed to the mean
of the trace, despite loss functions placing emphasis on spikes, or other long-tail events. Second,
there exist influences external to the data and communication contained in packets (e.g., physical
distance, link outages) that may have far greater impact on the timestamp value. While prior work
in the ML-community [41, 47] has demonstrated simultaneous generation of both discrete and
continuous-typed tabular data, the causal dependencies for these mixed types are wholly contained
in each independent sample. This contrasts with the scope of our modelling, where timestamps
have causal dependencies on the external influences mentioned above, not captured in the PCAP
data NETSSM learns from. As such, it seems necessary to in tandem, consider a third modality that
captures a network’s topological characteristics to inform timestamp generation.

An alternative approach may involve a special token which demarcates packet content from
discretized (i.e., tokenized) representations of the timestamp, allowing for training under the same
cross-entropy loss function (though the benefits/detriments of discretizing time must be consid-
ered). Future improvements to NETSSM’s timestamp generation and broader efforts to model both
packet contents and time in parallel should thus consider how to reason about the different modal-
ities involved, and attempt to incorporate outside influences not present in the capture itself.
Choosing generation granularity (single-flow versus multi-flow). NETSSM is the first net-
work traffic generator that can generate raw packet traces comprised of either a single flow, or

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:18 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

multiple flows. However, it is important to consider which granularity is most appropriate when
modelling a given networked workload. An example of this is in Section 5.3.2, where instructing
NETSSM to generate a multi-flow trace for YouTube traffic, a workload whose ground truth is pre-
dominantly comprised of only a single audio and video downloading flow, results in a substantial
number of “hallucinated flows.” Alternatively, synthetic traces for Netflix traffic, a workload whose
ground truth is predominantly comprised of five flows (one downloading audio and four download-
ing video) show moderate positive correlation to the ground truth. We provide this case study to
provide more thorough analysis of NETSSM’s behavior for generating video streaming traffic, and
to view how NETSSM behaves given different sending and receiving dynamics (i.e., YouTube’s
single server audio/video chunk transmission versus Netflix’s multiple server transmission). Intu-
itively, using a single-flow-trained NETSSM model to learn and generate a predominantly single-
flow workload will very likely yield substantially better results. Taken a step further, it may be
more effective to learn from and independently generate multiple key single-flow traces for a
given workload, before combining them in a unified, interleaved trace. However, determining how
to order the arrival and interleaving of flows may be a non-trivial task.

Generating and evaluating more diverse network data. In this work, we generate single and
multi-flow traces for various multimedia traffic. We choose these workloads as they are straightfor-
ward, and provide a solid starting point for evaluating NETSSM’s synthetic data. Follow-up work
should explore generating more diverse, and/or complicated traffic. One immediate direction is ex-
tending NETSSM’s pre-processor to parse traces comprised of additional transport and application
layer protocols (e.g., QUIC, RTP). This is easily implementable, only requiring writing an additional
handler function within our Go parser; all ML-related operation of NETSSM remains the same. Ad-
ditionally, we find that NETSSM’s performance may vary based on generation hyperparameters
to best suit a target workload. As such, additional modelling of different network workloads could
help to better understand if different patterns of parameters possibly exist for different traffic.

7 Conclusion

In this paper, we presented NETSSM, an SSM-based raw packet generator. NETSSM’s sequential,
stateful architecture enables it to learn from, and produce sessions 8x and 78x longer, respec-
tively, than the current state-of-the-art transformer-based raw packet generator. This allows it to
capture key flow-state-dependent session events at both the single and multi-flow session gran-
ularities that only manifest after substantial setup. NETSSM outperforms all previous generators
in measures of statistical similarity and as measured by the performance of downstream ML-for-
networking models trained on NETSSM data. We additionally pose a new evaluation of semantic
similarity that attempts to better reason about the empirical, practical similarities between syn-
thetic output and real-world network data. We find that NETSSM can capture complex application
dynamics of multi-flow networked communication. Finally, we verify that NETSSM’s generated
traces largely reproduce the TCP-adherent, and anomalous behaviors found in real traffic data.
This paper does not raise any ethical concerns.

Acknowledgments

We thank our shepherd Alessandro Finamore and our anonymous reviewers for their feedback and
suggestions. This work has been supported by grants from the Agence Nationale de la Recherche
(project no. ANR-21-CE94-0001 [MINT]), the National Science Foundation (grant nos. CNS-2334996
and CNS-2319603), and the France and Chicago Collaborating in The Sciences program.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:19

References

(1]

—
Nelos)
—_

[10]

[11
[12

—

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

Sebastian Abt and Harald Baier. 2014. Are we missing labels? A study of the availability of ground-truth in network
security research. In 2014 third international workshop on building analysis datasets and gathering experience returns
for security (badgers). IEEE, 40-55.

Fred Baker, Bill Foster, and Chip Sharp. 2004. Cisco architecture for lawful intercept in IP networks. Internet Engi-
neering Task Force, RFC 3924 (2004).

Alessio Botta, Alberto Dainotti, and Antonio Pescapé. 2012. A tool for the generation of realistic network workload
for emerging networking scenarios. Computer Networks 56, 15 (2012), 3531-3547.

Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teixeira, and Nick Feamster. 2019. Infer-
ring streaming video quality from encrypted traffic: Practical models and deployment experience. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 3, 3 (2019), 1-25.

Tobias Biihler, Roland Schmid, Sandro Lutz, and Laurent Vanbever. 2022. Generating representative, live network
traffic out of millions of code repositories. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks. 1-7.
Lelio Campanile, Marco Gribaudo, Mauro Iacono, Fiammetta Marulli, and Michele Mastroianni. 2020. Computer
network simulation with ns-3: A systematic literature review. Electronics 9, 2 (2020), 272.

Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster. 2024. Feasi-
bility of state space models for network traffic generation. In Proceedings of the 2024 SIGCOMM Workshop on Networks
for AI Computing. 9-17.

ciscotrex2023 2024. The CISCO TRex Tool. https://trex-tgn.cisco.com/. [Online; accessed 31-May-2024].

Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized Models and Efficient Algorithms Through Struc-
tured State Space Duality. In Proceedings of the 41st International Conference on Machine Learning (Proceedings of Ma-
chine Learning Research, Vol. 235), Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (Eds.). PMLR, 10041-10071. https://proceedings.mlr.press/v235/dao24a.html
Francois De Keersmaeker, Yinan Cao, Gorby Kabasele Ndonda, and Ramin Sadre. 2023. A Survey of Public IoT Datasets
for Network Security Research. IEEE Communications Surveys & Tutorials (2023).

Let’s Encrypt. 2024. Let’s Encrypt Stats. https://letsencrypt.org/stats/ Accessed: 2024.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752 (2023).

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher R é. 2020. Hippo: Recurrent memory with optimal
polynomial projections. Advances in neural information processing systems 33 (2020), 1474-1487.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396 (2021).

Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les Wu, Ethan Katz-Bassett, and Gil Zussman. 2019.
Requet: Real-time QoE detection for encrypted YouTube traffic. In Proceedings of the 10th ACM Multimedia Systems
Conference. 48-59.

Guy Harris and Michael Richardson. 2025. PCAP Capture File Format. Internet-Draft draft-ietf-opsawg-pcap-06. In-
ternet Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/06/ Work in Progress.
Hongyu Hé and Maria Apostolaki. [n. d.]. Just-in-Time Logic Enforcement. ([n.d.]).

Hongyu Hé¢, Minhao Jin, and Maria Apostolaki. 2025. Learning Constraints Directly from Network Data. arXiv
preprint arXiv:2506.23964 (2025).

Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. 2008. Network simulations
with the ns-3 simulator. SSIGCOMM demonstration 14, 14 (2008), 527.

Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH). RFC 8484. https://doi.org/10.17487/
RFC8484

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New Directions in Automated Traffic Analysis
(CCS ’21). Association for Computing Machinery, New York, NY, USA, 3366-3383. https://doi.org/10.1145/3460120.
3484758

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New directions in automated traffic analysis.
In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security. 3366—-3383.

Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E. Hoffman. 2016. Specification for
DNS over Transport Layer Security (TLS). RFC 7858. https://doi.org/10.17487/RFC7858

Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt, Francesco Bronzino, and Nick Feam-
ster. 2024. NetDiffusion: Network Data Augmentation Through Protocol-Constrained Traffic Generation. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 8, 1 (2024), 1-32.

Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt, and Nick Feamster. 2025. JITI: Dynamic Model
Serving for Just-in-Time Traffic Inference. Proceedings of the ACM on Networking 3, CONEXT4 (2025), 1-24.

Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction problems. (1960).

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

https://trex-tgn.cisco.com/
https://proceedings.mlr.press/v235/dao24a.html
https://letsencrypt.org/stats/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/06/
https://doi.org/10.17487/RFC8484
https://doi.org/10.17487/RFC8484
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.17487/RFC7858

6:20 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

[27] Mathieu Lacage and Thomas R Henderson. 2006. Yet another network simulator. In Proceedings of the 2006 Workshop
on ns-3. 12-es.

[28] Jianfeng Li, Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Xian Zhan, and Xiaobo Ma. 2022. {FOAP}:{Fine-
Grained{Open-World} android app fingerprinting. In 31st USENIX Security Symposium (USENIX Security 22). 1579
1596.

[29] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. 2022. ET-BERT: A Contextualized Datagram
Representation with Pre-training Transformers for Encrypted Traffic Classification. In Proceedings of the ACM Web
Conference 2022 (WWW ’22). ACM. https://doi.org/10.1145/3485447.3512217

[30] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using gans for sharing networked time series
data: Challenges, initial promise, and open questions. In Proceedings of the ACM Internet Measurement Conference. 464—
483.

[31] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Measuring the performance and network
utilization of popular video conferencing applications. In Proceedings of the 21st ACM Internet Measurement Conference.
229-244.

[32] Xuying Meng, Chungang Lin, Yequan Wang, and Yujun Zhang. 2023. Netgpt: Generative pretrained transformer for
network traffic. arXiv preprint arXiv:2304.09513 (2023).

[33] Anthony Moi and Nicolas Patry. 2023. HuggingFace’s Tokenizers. https://github.com/huggingface/tokenizers

[34] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time. Computer networks 31, 23-24 (1999),
2435-2463.

[35] Jian Qu, Xiaobo Ma, and Jianfeng Li. 2024. TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis
and Generation. arXiv preprint arXiv:2403.05822 (2024).

[36] David W Scott. 2015. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons.

[37] Taveesh Sharma, Tarun Mangla, Arpit Gupta, Junchen Jiang, and Nick Feamster. 2023. Estimating WebRTC Video

QoE Metrics Without Using Application Headers. In Proceedings of the 2023 ACM on Internet Measurement Conference

(Montreal QC, Canada) (IMC ’23). Association for Computing Machinery, New York, NY, USA, 485-500. https://doi.

org/10.1145/3618257.3624828

shramos. 2019. shramos/pcap-splitter. https://github.com/shramos/pcap-splitter.

Pallavi Singhal, Rajeev Mathur, and Himani Vyas. 2013. State of the Art Review of Network Traffic Classification

based on Machine Learning Approach. International Journal of Computer Applications 975 (2013), 8887.

Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE MultiMedia 18, 4

(2011), 62-67. https://doi.org/10.1109/MMUL.2011.71

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein. 2021. Saint: Improved

neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint arXiv:2106.01342 (2021).

Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using Machine Learning for Network Intrusion

Detection. In 2010 IEEE Symposium on Security and Privacy. 305-316. https://doi.org/10.1109/SP.2010.25

Matthew Swann, Joseph Rose, Gueltoum Bendiab, Stavros Shiaeles, and Nick Savage. 2021. Tools for Network Traffic

Generation-A Quantitative Comparison. arXiv preprint arXiv:2109.02760 (2021).

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod

Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, {lhan Polat, Yu

Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antd nio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17

(2020), 261-272. https://doi.org/10.1038/s41592-019-0686-2

Aaron Voelker, Ivana Kaji¢, and Chris Eliasmith. 2019. Legendre memory units: Continuous-time representation in

recurrent neural networks. Advances in neural information processing systems 32 (2019).

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022. Practical gan-based synthetic ip header trace

generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference. 458—472.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos Faloutsos, Huzefa

Rangwala, and George Karypis. 2023. Mixed-type tabular data synthesis with score-based diffusion in latent space.

arXiv preprint arXiv:2310.09656 (2023).

Shiyuan Zhang, Tong Li, Depeng Jin, and Yong Li. 2024. NetDiff: A Service-Guided Hierarchical Diffusion Model for

Network Flow Trace Generation. Proceedings of the ACM on Networking 2, CONEXT3 (2024), 1-21.

[38
[39

—_

[40

[t

[41

—

[42

—

[43

—

[44

—

[45

[

[46

—

[47

—

[48

—

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

https://doi.org/10.1145/3485447.3512217
https://github.com/huggingface/tokenizers
https://doi.org/10.1145/3618257.3624828
https://doi.org/10.1145/3618257.3624828
https://github.com/shramos/pcap-splitter
https://doi.org/10.1109/MMUL.2011.71
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1038/s41592-019-0686-2

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:21

A Comprehensive Results on Downstream Utilization

App Level; Tested on Real Data Service Type Level; Tested on Real Data App Level; Tested on Syn Data Service Type Level; Tested on Syn Data
1.0 1.0 1.0 1.0
0.8 0.8 08 0.8
o o
Sos 06 06 —— RF, NETSSM (base) Sos —e— RF, NetDiffusion
g Ay —— DT, NETSSM (base) 3 - DT, NetDiffusion
< o4 0.4 0.4 —— SVM, NETSSM (base) <04 --e—- SVM, NetDiffusion
—+— RF, NETSSM (fine-tuned) i —4- RF, NetShare
0.2 02 0.2 # /“ —+— DT, NETSSM (fine-tuned) 0.2 ‘ —4—- DT, NetShare
/ —#— SVM, NETSSM (fine-tuned) -4 SVM, NetShare
0.0 0.0 0.014 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Mixing Rate Mixing Rate Mixing Rate Mixing Rate

Fig. 1. Comparative ML performance across different model choices with mixed training data proportions.

B Additional Video Streaming Segment Results

The scenarios shown in all figures below have the following ground truth data bit rates: (1) 554
kbps, (2) 1,366 kbps, (3) 2,726 kbps, (4) 2,460 kbps, (5) 1,361 kbps, and (6) 1,450 kbps.

o1 =3 Ground Truth o4
1 Gen
2010 03
& Koz
005
01
2

10

0.006

%000t
H

0.002

’:J - MaxKS Dist.

00 0 100 200 300 0 107

s 0 5
Avg, Segment Size per CDN Sender (KB) Raw Segment Size (KB, Log Transformed)

0 2 1 6 W w10 0
No. of Segments (Log Transformed) Raw Segment Size (Log Seale)

3
No. of Segments (Log Seale)

(@) (b) (© () (@)

Fig. 2. Distributions for downloaded segments. KDE (log-transformed) and ECDF (non-log-transformed,
displayed on log scale) plots for the number and size of downloaded segments sent per sender. The ground
truth trace has a data bit rate of 1,366 kbps. NETSSM’s distributions overlap significantly with the real data.

Downloaded Segment Sizes. Figure 2 shows applying kernel density estimation (KDE) to the av-
erage segment sizes per sender (2a) and log-transformed sizes of all raw segment sizes (2b), and the
empirical cumulative distribution function (ECDF) for raw segment sizes (2d) for a ground truth
and corresponding generated trace. All KDE plots are created using a Gaussian kernel with (ground
truth, generated) bandwidths 0£(40.62, 39.08), and (1.07, 0.99) for Figures 2a, and 2b respectively,
chosen using Scott’s rule of thumb in the Python scipy library [36, 44]. These figures well illus-
trate the similarity in downloaded segment sizes, where Observing Figures 2a and 2b, clear overlap
exists between the segment sizes of the ground truth and synthetic data, even when considering
instances of larger tail values. Similarly, in the Figure 2d ECDF, the generated trace segment sizes
overlap with the ground truth, as illustrated by similar magnitudes in the 25th, 50th, and 75th
quartiles: (580.00, 4344.00,41564.00) KB for ground truth and (369.50,3721.00, 14349.50) KB for
generated, respectively. As such, we see that NETSSM generates traces with similar size magni-
tudes across all segments, and with small and medium-sized segments are with similar absolute
size, as compared to the ground truth.

Figure 3 shows additional visualizations for both the average downloaded segment sizes and raw
downloaded segments sizes. Specifically: (a) KDE plots for the average downloaded segment sizes
per sender, (b) KDE plots for the log-transformed average downloaded segment sizes per sender,
(c) KDE plots for the sizes of all downloaded segments and (d) KDE plots for the log-transformed
sizes of all downloaded segments.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:22 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

(@ (b) (© (d

025
o000 [0 Ground Truth [Ground Truth 0.008 =1 Ground Truth 03 [Ground Truth
[Generated 0.20 [Generated 1 Generated 0 Generated
0.006-
oo Zos s
) 2 :
& S0 & o004
0.002
005 0.002
0.000 0.00+ 0.000
—200 0 200 400 600 —25 00 25 50 75 0 500 1000 1500 2000 ~ 0 5 10
Avg. Segment Size per CDN Sender (KB) Avg. Seg. Size per CDN Sender (KB, Log Trans) Raw Segment Size (KB) Raw Segment Size (KB, Log Transformed)
0.008 0.25
=1 Ground Truth T3 Ground Truth 000 =1 Ground Truth o = Ground Truth
1 Generated 3 Generated 0,008 0 Generated [Generated
z £ 0006
@ : :
Q 2 0.004
0.002
- 0.000-
—100 0 100 200 300 -25 00 25 50 75 0 500 1000 =5 0 5 10
Avg. Segment Size per CDN Sender (KB) Avg. Seg. Size per CDN Sender (KB, Log Trans) Raw Segment Size (KB) Raw Segment Size (KB, Log Transformed)

0.020
oo =1 Ground Truth 020 =1 Ground Truth =1 Ground Truth 015 3 Ground Truth
0.008 [Generated : [Generated 0015 [Generated [Generated
£ 0006 g £ Zo1w0
) : 3 %000 :
& 0000 & 010 & a
0.05
0.002 0.05 0.005-
0.000- 0.00) 0.00
~200 0 200 400 600 800 25 0.0 25 5.0 7.5 10. 0 500 1000 1500 2000 -5 o 5 10
Avg. Segment Size per CDN Sender (KB) Ave. Seg. Size per CDN Sender (KB, Log Trans) Raw Segment Size (KB) Raw Segment Size (KB, Log Transformed)
0.4
020 = Ground Truth
oouzs =3 Ground Truth = Ground Truth 00125 3 Ground Truth 1 Generated
3 Generated 1 Generated 3 Generated 03
o100 015 00100
£ £ g 0.0075
(4) goowms o010]
a a a
0.0050 0.0050
0.05
0.0025 0.0025
0.0000° 0,00+ g
“o 0 100 20 300 —25 00 25 50 75 0 500 1000 1500 - 0 5 0
Avg. Segment Size per CDN Sender (KB) Avg. Seg. Size per CDN Sender (KB, Log Trans) Raw Scgment Size (KB) Raw Segment Size (KB, Log Transformed)
[Ground Truth 0.20 [Ground Truth 1 Ground Truth 025 [Ground Truth
0.006 [Generated [Generated 0.006 [0 Generated [Generated

0.004

®)

Density

0.002

1 0.000
-200 0 200 400 600 -25 75 100 0

00 25 50 1000 2000
Avg. Segment Size per CDN Sender (KB) Avg. Seg. Size per CDN Sender (KB, Log Trans) Raw Segment Size (KB)

= o 5 10
Raw Segment Size (KB, Log Transformed)

=3 Ground Truth = Ground Truth 3 Ground Truth

0.010 = Ground Truth
Generated

[Generated [Generated 1 Generated

0.006

0.004

(©)

Density

0.002

1 0.000
—100 0 100 200 300 -2 0 2 4 6 8 —250 0 250 500 750 1000 -5 0 5 I
Avg, Segment Size per CDN Sender (KB) Avg, Seg. Size per CDN Sender (KB, Log Trans.) Raw Segment Size (KB) Raw Segment Size (KB, Log Transformed)

Fig. 3. KDE plots for downloaded segment sizes.

Number of Downloaded Segments. We also evaluate the number of segments downloaded both
in NETSSM’s synthetic traces and in the ground truth. Similar to evaluation of segments’ sizes, we
find that NETSSM produces data that closely aligns with the ground truth traffic. In Figures 2c and
2e, there again exists clear overlap in the KDE plots for number of segments downloaded between
the ground truth and synthetic data, though it appears NETSSM’s traces may not completely cap-
ture the tail end cases of higher volume senders. The quartile values from the Figure 2e ECDF
further supports the overlap, with only small deltas between the ground truth (7.00, 10.00, 12.75)
and generated (5.75, 9.50, 11.75) number of segments downloaded, respectively.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

—
=
=

—
™
-

()]

—
=
=

—
>
=

—
w
=z

NetSSM: Multi-Flow and State-Aware Network Trace Generation using State-Space Models 6:23
NETSSM-generated Netflix Ground truth Netflix
- e ~
[WA E Prompt
&, 1000 * * TOmPE L 1000
E E
% L * o oY @
o750 * vy o 750
au . . = .
2 2
£ 5001 eet. N v £ 5001 eotuy
] b & v 2
22501 + + 22501 e M
§45 * Sk o |
PRIV - PR, 3. 1 N * oL monifite LN 318
0 20 40 60 80 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
w0001 b Prompt 1000
o 9
3 3
@ 750 7 750
g g
YR
2 500 v v 2 500
= =
2 2
2 250 : . 2 250
o k] * -
ol semafl b e 2L P AN SUPOR. 8 Ay a—
0 20 40 60 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
00y b e Prompt 1000
8 v
= 2 & = -
7 750 2 750 . e e o
g v ” g *
a v VTN Ty YRR TYY, vy " "y
Z 500 + 3 ' W 2 500 o Taat * 5
E * v _’g' ™ * s
g 250 i R Z 250 . *
P * * -
Y B - . aa 0l sremwe : - SN S NS
0 20 40 60 80 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
NETSSM-generated YouTube Ground truth YouTube
1000{ | T T W N ey W VY gy T YT -moe Prompt 1000
3 2
% 750 %750
B o}
a ~
2 500 £ 500
= =
2 2
2 250 2 250
ol 2 - L] . el 0%)
0 20 40 60 80 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
————— Prompt
3 800 P 3 800
600 v Z 600 v
] 3
a =%
2 v a
£ 400 £ 400
c = v
& 200 ¥ 200
e ® e arta e Py =" *
b R 0T 5 = o M PR e E a iR Y oLged)
0 20 40 60 80 100 0 20 40 60 80 100
Packet Slice (100 packets) Packet Slice (100 packets)
1000 A d L s At s Abaa At Prompt 1000
2 2
% 750 5 750
o) g
k=3 &
2 500 2 500
3 S "
= =
2250 2250 *
Y2 S NS - PR Y S el
0 20 80 100 0 20 80 100

40 60
Packet Slice (100 packets)

40 60
Packet Slice (100 packets)

Fig. 4. Plots of throughput per flow for NETSSM-generated/ground truth Netflix and YouTube trace pairs.

C Semantic Similarity

Figure 4 presents additional examples plotting the throughput in kilobits/100 packet slice for Net-
flix and YouTube traces. Table 1 shows the generation hyperparameters used in Section 5.3.

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

6:24 Andrew Chu, Xi Jiang, Shinan Liu, Arjun Bhagoji, Francesco Bronzino, Paul Schmitt, and Nick Feamster

Table 1. Generation parameters for NETSSM single and multi-flow models. RP: repetition penalty; T: tem-
perature; MP: min-p; TK: top-k; TP: top-p.

Dataset RP T MP TK TP

Netflix 1.8 0.15 0 25 09
YouTube 1.8 0.75 0 25 09

D Memorization Analysis

Table 2. NETSSM Memorization Analysis Overview. Table 2a reports packet-level memorization and diversity
metrics, while Table 2b lists header fields with the largest real-synthetic changes.

(a) Packet-Level Memorization and Diversity Metrics (b) Header Fields with Largest Avg
Change

Basic Comparison

Header Field Avg Change (bytes)

METRIC VALUE %

Identical Packets - 235 TCP_ack 835.2M

Differing Bytes — 92297 TCP_seq 758.8M

g by

Avg diff. per Packet 44.78 bytes - TCP_chksum 19,885

TCP_sport 12,974

Intra-Set Diversity TCP_dport 12,971

Synthetic Packets: IP_id 12,122

Avg Pairwise Dist 0.359 (norm.) - IPfchks.um 11,436

Std. Dev 0.206 (norm.) _ TCP_window 2,543

Real Packets: IP_len 192

Avg Pairwise Dist 0.680 (norm.) - TCP_urgptr 24.68

Std. Dev 0.250 (norm.) - IP_ttl 11.97

Diversity Ratio (Syn/Real) 0.528 (norm.) - IP_tos 5.54

Raw_load 1.00

Nearest-Neighbor Memorization Padding_load 1.00

Overall Mean Dist 0.186 (norm.) - TCP_options 0.83
Median Dist 0.170 (norm.) -
Std. Dev 0.085 (norm.) -
Min / Max Dist 0.000 / 0.543 -

Thresholds:

Within 5% - 383
Within 10% - 10.67
Within 15% — 4048
Within 20% - 66.82

Position-Aware Memorization

Packets 0-10:

Avg Dist 0.128 4+ 0.041 -
Packets 10-50:

Avg Dist 0.175 4+ 0.052 -
Packets 50-100:

Avg Dist 0.223 + 0.083 -

Received June 2025; revised November 2025; accepted December 2025

Proc. ACM Netw., Vol. 4, No. CONEXT1, Article 6. Publication date: March 2026.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traffic Attribute Generators
	2.2 Raw Packet Generators

	3 State Space Models for Network Traffic Generation
	3.1 Background: State Space Models and Mamba
	3.2 Why Mamba?

	4 NetSSM
	4.1 Pipeline Overview
	4.2 What NetSSM Does and Does Not Do

	5 Evaluation
	5.1 Statistical Similarity
	5.2 Downstream Utility
	5.3 Semantic Similarity
	5.4 Protocol Compliance
	5.5 Memorization Analysis

	6 Discussion, Limitations, and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Comprehensive Results on Downstream Utilization
	B Additional Video Streaming Segment Results
	C Semantic Similarity
	D Memorization Analysis

