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ABSTRACT

Machine learning techniques are a common solution used to solve
a variety of network management tasks. Often, a network admin-
istrator chooses the model to deploy based on offline information,
such as model performance and system load. Yet, network traffic is
inherently dynamic making it hard to select an optimal model that
can work throughout ever changing conditions. In this paper, we
make the case that, instead of having to select the optimal candidate
model based on offline information, systems should adapt based on
the network conditions observed. We present a system design that
takes as input a set of candidate models and their features, and adap-
tively selects the better configuration as a function of the network
and system conditions.
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1 INTRODUCTION

Nowadays Machine Learning (ML) techniques have become a com-
mon solution used to solve a variety of network management tasks.
ML models simplify the identification of complex relationships be-
tween network traffic and important events occurring at different
network layers. Thus, the networking community has developed ML
models to help with traffic analysis tasks like QoF inference, traffic
classification, intrusion detection, and more [2].

ML inference tasks are commonly identified by a three steps
pipeline: the first step involves ingesting raw network traffic, where
traffic undergoes multiple operations, including header parsing, flow
tracking and reassembly, and more; the second step performs feature
extraction, computing statistics and encoding information to prepare
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for the model; the third and final step inputs the processed features
to the ML model (e.g., random forest, neural network) for the final
inference. Conventionally, the performance of these pipelines is eval-
uated at training time based on the quality of the input features and
the trained model type. Unfortunately, different factors can impact
the actual performance of the model. For example, the inability of a
measurement system to cope with the amount of incoming traffic
can terminate in packet losses that dramatically impacts the quality
of the produced features and the final model performance.

To meet different tradeoffs across model performance and system
constraints, different models are available for each task. For example,
in the case of video quality inference, Bronzino et al. [3] presented a
study of the impact that different feature sets have on the accuracy of
video quality inference models as well as on the costs that collecting
such features has on the measurement system. However, in most
cases, models trained offline in a lab setting provide little to no
representation of the system’s ability to capture traffic nor the impact
that packet loss can have on model performance. For these reasons,
the users of these models have to decide a priori on which model
might best fit their deployment, configuring their measurement
system accordingly [3, 4]. Yet, network traffic is inherently dynamic
and varies throughout the day due to continuous shifts in usage,
making it hard, if not impossible, to select an optimal configuration
that can work throughout these changes. Further, substituting such
configurations requires to first observe that the system is not capable
of processing the traffic, and then manually change the configuration
causing further loss due to reboot times.

In this paper, we argue that the best advantage point to understand
a system’s ability to process traffic and generate the features for
a target model is the system itself. Instead selecting the optimal
candidate model based on offline information, systems should adapt
based on up-to-date information of the traffic observed as well as on
the system’s ability to extract the requested features for a specific
traffic load. Towards this, we present the high level design of a
system that takes as input a set of candidate ML models, and the
features they require as input, and adaptively selects the better fitting
configuration as a function of the network and the system conditions.

2 USE CASE: VIDEO QUALITY INFERENCE

To demonstrate the impact that the offline choice of a model can have,
we focus on the task of video quality inference from encrypted traffic.
We partially recreate the experiment from Bronzino et al. [3] and
train two candidate machine learning models to infer the resolution
of video streaming applications over time. The two models use two
different feature sets: the first model employs network-layer features,
e.g., packet counters and throughput, while the second model uses
application-layer metrics gathered from observing packet patterns
generated by video applications, i.e., video segments sizes. We eval-
uate the performance of the two models in perfect conditions, i.e.,
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with no packet loss, as well as the impact that packet loss can have
on the best performing model. From Figure 1 we observe that at
no loss the model that uses application layer features does indeed
outperform the model that uses network layer features by more
than 15%. However, when we introduce packet loss, the performance
deteriorates rapidly, and the network-layer based model starts to
outperform the other model at around 15% loss.

We then implement the two models in areal system, Retina [4], and
evaluate the ability of the system to extract the required features at
varying trafficloads. To emulate realistic traffic, we deploy the system
on a testbed with two servers connected by a 100gbps programmable
switch. On the second server we deploy TRex [1] injecting an IMIX
”SFR” profile, a combination of various traffic templates that we
enhance with video traffic, at different rates. In Figure 2 we show the
amount of packets per second the system is capable of processing
with respect to the injected rate. We observe that, when processing
application-layer features, the system starts dropping packets at
around 12 Mpps, a 39% lower processing capacity compared to the
network-layer features.

These two experiments show that, as traffic loads increase, it
might be beneficial to lower-cost configurations and models as a
preferred solution to maximize performance. More broadly, they
support the argument that it is challenging to train a single model
that works in every condition, suggesting the need for an adaptive
system, as described in the next section.

3 DYNAMIC CONFIGURATION

In this section, we propose the high level design of a system that
adaptively choses the best ML model to use at any point in time ac-
cording to the trade-off between model accuracy, system capabilities,
and network load. Starting from a pool of candidate models, and
their underlying features to collect, the system comprises three key
building blocks, as illustrated in Figure 3.

Model Selection. The model selection module has the goal of track-
ing the system performance and select the best candidate model
given the observed environment. The module consists of two parts
which create the capabilities for the system to self adapt this con-
figuration without intervention or reboot. The profiler analyzes the
performance of the system itself (CPU and memory usage, number
of instructions required per feature, etc.). The monitor continuously
aggregates information from the profiler as well as statistics from the
Packet Capture module (e.g., packets received, packets dropped, etc.).
Using this information, the monitor decides whether it is necessary
to update the features collected by the system in the likelihood of
reaching a bottleneck.

Packet Capture. To support high network rates and fast packet
processing, the system relies on state-of-the-art packet capture li-
braries process. Further, the system enables the implementation of
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Figure 3: Scheme of the system

packet filters to drop early any unnecessary flow and focus on traffic
of interest.

Feature Creation. The Feature Creation module is the final step of
the packet processing pipeline and it is in charge of transforming raw
packets in features to be used by ML models. The module is composed
of a set of workers that compute the features selected by the monitor
as fast as possible. After processing, the Renderer aggregates the
collected features and compute the final representations to be used
by the ML models (e.g., averages, min/max, etc.).

In summary, the system consists of three fundamental building
blocks, each strategically designed to optimize the tradeoff between
model accuracy, system capabilities, and network context. Together,
these modules enable our system to seamlessly adapt remaining
attuned to the inherent dynamicity of network traffic.

4 CONCLUSION

In this paper, we have proposed the design of a system that adapts
in real time to varying network conditions to select the best features
and models for ML-based network management tasks. Such a system
can be used to simplify the deployment of ML models in in concrete
applications for network administrators and operators to more easily
rely on machine learning solutions to drive their networks. Our first
implementation shows encouraging early results. We are currently
developing a prototype that implements the whole system from the
feature extraction components, the ML models, to the monitor that
selects features and ML models in real time.

This early work presents several interesting challenges to over-
come and future work directions to explore. One key challenge in-
volves expanding the array of feature sets to satisfy the requirements
of various machine learning models. Furthermore, exploring more
complex profiling metrics beyond the scope of packet loss alone
promises to be an interesting avenue of research. With the inclusion
of these metrics, our system will be more proficient in extracting
the most suitable feature set for the current network context, thus
ensuring the choice of the best model.
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