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Abstract—This paper reports results and experiences from
the validation process performed to experimentally evaluate the
design of the Future Internet Architecture MobilityFirst. Next,
we discuss possible evaluation strategies that take into account
the desired scale and degree of realism necessary for validation.
Specific examples of experimental evaluations for the Mobili-
tyFirst architecture running on the ORBIT and GENI testbed
are given. These include routing and name resolution scalability
experiments on ORBIT, service-level evaluations on GENI, and
real world experimentation with end-users using both ORBIT
and GENI capabilities. Selected results from these experiments
are presented and discussed in context of MobilityFirst evaluation
goals.

I. INTRODUCTION

Research programs exploring clean-slate architectures are
steadily growing over the last few years. Among others NSF
future Internet architecture (FIA) [1] and Future Internet
Design (FIND) [2] in the US and FP7 Future Networks [3]
in Europe are example of the increased research activity on
this subject. As most of these projects present new Internet
architectures and protocols often starting from a clean slate
approach, it is important to understand the different tools
available to carry out the required validation work. Large-
scale experimental networking, such as GENI [4] in the US
and FIRE [5] in Europe, aim to provide the necessary infras-
tructures and environments for validation of new protocols.
As the availability and the quality of these tools improve by
the year, it is more and more important to understand the
advantages and the limits of validation through alternative
testbed deployments.

The MobilityFirst project [6], funded by the NSF FIA
program, recognizes the predominance of mobile networking
and aims to directly address the challenges of this paradigm
shift. MobilityFirst is designed around the principle that mobile
devices, and their associated applications, should be treated
as first-class Internet citizens. There are many challenges
associated with integrating wireless/mobile communications as
a core requirement of the Internet architecture - these include
mobility, varying levels of connectivity, intermittent discon-
nection, multiple network attachment points per device, and
a desire for flexible, group-based routing paradigms. Current
Internet protocols, such as TCP/IP, are limited in their support
for these challenges as they were built using a connection ori-
ented model. Instead, MobilityFirst takes advantage of Moore’s
Law improvements in processing and storage, shifting some
intelligence into the network and decreasing the emphasis on
end-to-end functions.
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Following the MobilityFirst project’s initial design phase,
a growing focus has been directed towards exploring the feasi-
bility of this design using different experimental environments
and facilities. In this paper, we present results and experiences
obtained via experiments with the FIA MobilityFirst prototype
on two different testbeds: ORBIT [7] and GENI. Starting in
Section II from an introduction to the MobilityFirst protocol
stack and main architectural components, we present in Section
III a collection of experiments that provides an idea of how
these testbeds have been used together with the developed
MobilityFirst protocol stack to meet different validation re-
quirements; finally we conclude the paper in Section IV.

II. MOBILITYFIRST PROTOCOL STACK

The MobilityFirst [8] architecture’s main design centers
around a new name-based service layer which serves as the
narrow-waist of the protocol stack. The name-based service
layer uses the concept of flat globally unique identifiers
(GUIDs) for network attached objects, a single abstraction
which covers a broad range of communicating objects from
a simple device such as a smartphone to a person, a group
of devices/people, contents or even contexts. This name-based
services layer makes it possible to build advanced mobility-
centric services in a flexible manner while also improving
security and privacy properties. Network services are defined
by the source and destination GUID and a service identifier
to specify the delivery mode such as multicast, anycast, multi-
homing, content retrieval or context-based message delivery.
A hybrid name/address based routing scheme is used for
scalability, employing a Global Name Resolution Service
(GNRS) to dynamically bind the GUID to a current set of
network addresses (NAs). The GNRS in MobilityFirst is a log-
ically centralized service responsible for naming, security, and
augmenting network layer functionality. The clean separation
of identity and location of endpoints is the key to achieve
seamless mobility and in achieving trustworthiness ensuring
that identities and their locations can be easily verified.

Data transport in MF is achieved by transferring blocks
in a segmented manner using storage-aware routers unlike
the current Internets end-to-end approach using TCP/IP. A
block transport protocol transports blocks, or large chunks of
contiguous data, in a hop-by-hop reliable manner as opposed
to traditional transport protocols like TCP that transport small
packets in an end-to-end rate-controlled manner. Segmented
transport generalizes hop-by-hop transport to segments or a
sequence of contiguous links terminated by storage-aware
routers or endpoints. Congestion control across segments fol-
lows a segment-level back pressure approach similar to Hop
[9]. The segmented block transport protocol enables content



Fig. 1: MobilityFirst architecture design. Fig. 2: Service abstractions provided via the client API.

to be transferred as one or more blocks each with a self-
certifying content identifier, which enables on-path MF routers
to opportunistically cache and serve popular content.

For evolvability, MobilityFirst incorporates a virtualized
compute layer that enables novel programmable network ser-
vices to be deployed rapidly into the routing fabric. However,
there are two key challenges to be addressed to make this
approach practical. First, the compute layer must not introduce
significant overhead on the default forwarding path for legacy
traffic. Second, the compute layer must ensure resource con-
tainment for each service and isolation across different services
for security and accountability. The compute layer in MF relies
on such an API similar in spirit to software defined networks,
but goes beyond the basic use case of virtualized network
control and management to offer more general packet cloud
services in the data path. Feasibility analysis of these services
is thus a key aspect in the evaluation of the architecture.

Finally, at the core of the architecture is a name-based
networking abstraction that contrasts with the name-address
conflated communication interface associated with Berkeley
sockets and the TCP/IP stack. All network-attached objects
in the MobilityFirst architecture enjoy direct addressability
through long lasting unique network names or identifiers (we
use GUIDs). This new GUID-centric network service API, first
presented in [10] offers network primitives for basic messaging
(send, recv) and content operations (get and post) while
supporting several delivery modes innately supported by the
MF network such as multihoming, multicast, anycast and DTN
delivery. Combined with the GUID indirection and group-
ing (GUID mapped to one or more other GUIDs) concepts
supported by the naming services, the new communication
API can produce novel addressing and delivery capabilities
only indirectly possible (and with certain in-efficiency) in
today’s IP architecture. Supporting the variety of services that
are introduced in this API are then fundamental towards the
validation of the architecture design.

III. VALIDATING THE ARCHITECTURE DESIGN

Validating the design of a novel architecture such as Mo-
bilityFirst requires a comprehensive effort that spaces across
different experimental techniques. This is due to the different
requirements and goals that are part of the process. In order to
understand the value of alternative experimental testbeds it is
indeed important to identify the particular functional aspects
(scale, performance, protocol validity, etc.) that need to be
evaluated. In many cases, performance verification at scale is
still best suited for simulated environments, such as NS3. This

approach applies well to classical network problems such as
aggregate routing evaluations looking at different metrics such
as protocol overhead and achievable throughput. A tradeoff
with the scale of the experiments can be desirable in order to
obtain higher levels of realism. Performance critical systems
and elements of the architecture might require this approach in
order to validate their feasibility. Finally, even higher levels of
realism can be obtained by means of deploying the architecture
with real end-users that can interact with the network and the
deployed services through specific application.

Figure 3 summarizes realism and scale achieved by dif-
ferent evaluation methods/testbeds, and the typical sequence
of simulation to testbed evaluation to large-scale user trials.
In the following sections we will use specific examples of
experiments and scenarios for the main steps: large-scale sim-
ulation and experimental evaluation through prototyping and
use of Emulator testbeds and real-world deployments. Starting
from the initial validation of the architecture routing protocols
performed through simulation models, we describe the main
components that constitute our protocol stack implementation
that has been the basis of experiments performed on two
different testbeds: ORBIT and GENI.

A. Protocol Evaluation Through Simulation

MobilityFirst introduces, as part of its design, a novel
inter domain routing protocol called Edge-Aware Inter-Domain
Routing protocol (EIR) [11]. In an effort to better adapt to
changes at the edge network and better support for multi-path,
multi-homing and multi-network operation, the EIR protocol
defines abstract network entities such as aggregated routers,
called aNodes, and virtual links between them called vLinks.
Aggregated information about aNodes and vLinks in a network
are disseminated to every other AS through network state
packets (nSPs) in order to provide a complete view of the
network graph.

To evaluate the protocol at a global scale, we designed and
implemented a custom-built discrete event-driven simulation
to reflect the actual Internet topology according provided by
DIMES [12]. Through the simulation, we evaluate routing
event dissemination overhead and dissemination latency both
for EIR and for GSTAR [13], our intra domain routing
protocol. The simulator takes AS-level topology of the current
Internet as the network model by extracting the following
real-measurements from the DIMES database: (i) Connectivity
graphs containing 26235 ASs and 100K links between them,
(ii) Link latency between each pair of AS. As a sample result,
we show in Figure 4 the obtained routing overhead generated
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Fig. 3: Realism vs scale provided by different network evaluation
methods.

by the dissemination of link state packets under different
transmission schemes.

B. Protocol Stack Implementation

In order to move towards testbed based experimentation
we needed to develop a prototype that included the main
components that are part of the designed architecture . As
the MobilityFirst project addresses the feasibility of building
systems and networks in a clean-slate design, it requires the
development of such components from scratch. The result of
this efforts consists in three main tools: a GNRS implementa-
tion based on DMap’s design [14], a Click [15] based software
router and a multiplatform protocol stack and network API for
clients. Applications and network services can be implemented
as extensions of these basic elements. Moreover, we developed
the necessary support to automate experimentation using the
OMF [16] framework and provide statistic collections through
OML [17].

Global Name Resolution Service. A GNRS implementation
has been written in Java to provide a hardware and operating
system agnostic implementation. Wherever possible, standard
libraries are utilized to provide the required functionality, and
only the application logic needed to be written by hand. The
server is organized into several individual modules: network
access, GUID mapping, persistent storage, and application
logic. The application logic serves as a central point of coordi-
nation within the framework of the GNRS server daemon. The
network access component ensures that the GNRS server is
able to operate over any networking layer/technology without
changes to the core code. This replaceable component currently
supports IPv4 and MF routing. The GUID mapping module,
relying partly on a networking implementation, enables the
server to determine the remote GNRS hosts responsible for
maintaining the current bindings of GUID values. Persistent
storage is handled independently from the rest of the server
and exposes only a very simple interface, mapping to the
application messages available in the protocol. A BerkeleyDB
provides both in-memory and on-disk storage for GUID bind-
ings.

Routers. The software router is implemented as a set of
routing and forwarding elements within the Click modular
router. The router implements dynamic-binding using GNRS,
hop-by-hop transport, and storage-aware routing. It integrates
a large storage, an in-memory hold buffer, to temporarily
hold data blocks when destination endpoints during short-
lived disconnections or poor access connections. For dynamic

in-network binding of GUID to NA, the router is closely
integrated with the in-network GNRS by attaching to a local
instance of the distributed service. A particular instance of
this system, implements what we call a MobilityFirst access
router, a router providing access connectivity to clients. Access
routers also implement a rate monitoring service that tracks
the available bandwidth for each attached client. For WiMAX
networks, the rate is obtained by querying the WiMAX base
station when possible which exports the most recent downlink
bitrate allocated to each client by the scheduler based on a
client’s location, client offered traffic, and overall load on the
BSS. A similar rate monitoring capability is implemented for
WiFi Access Points using standard 802.11 netlink configura-
tion utilities. Thanks to the modular structure of Click, we are
able to extend the software implementation with additional
logic modules to support programmable network services.
An example of this will be presented in Section III-D. The
router software also collects statistics at different layers of the
protocol stack that can be reported through the use of an OML-
based monitor that runs as a separate process can interact with
the router through Click’s control interface.

Host Stack and API. The host stack has been implemented on
Linux and Android platforms as a user-level process built as an
event-based data pipeline. The stack is composed of a flexible
end-to-end transport to provide message level reliability, the
name-based network protocol including the GUID service
layer, a reliable link data transport layer, and a policy-driven
interface manager to handle multiple concurrent interfaces. The
device-level policies allow user to manage how data is mul-
tiplexed across one or more active interfaces. The previously
introduced socket API [10] is available both as C/C++ and
JAVA libraries and implements the name-based service API
which include the primitives send, recv, and get and a set
of meta-operations available for instance to bind or attach a
GUID to one or more NAs, configure transport parameters in
the stack, or to request custom delivery service types such
as multicast, anycast, multihoming, or in-network compute.
Similarly to the router implementation, the protocol stack
collects and optionally reports traffic and resource statistics
to a OML backend data repository.

All these components have been designed with flexibility
in mind trying to reduce dependency from specific systems to
a minimum. The set of basic requirements necessary to run
any of these elements is minimal as any x86/x64 machine
(physical or virtualized) running a recent Linux distribution
can host them (the development has been based on Ubuntu
12.04 LTS). Future developments will also focus in providing
implementation for emerging technologies (e.g. SDN and
hardware enhancements).

C. Scalability Results Using ORBIT

The Orbit testbed is a two-tier wireless network emula-
tor/field trial designed to achieve reproducible experimentation.
Its main facility is the radio grid testbed which uses a 20x20
two-dimensional grid of programmable radio nodes which can
be interconnected into specified topologies both using repro-
ducible wireless channel models allowing fine grained control
over connectivity resources, both using a fully connected 1Gbit
ethernet based layer 2 network. Thanks to its large set of
resources it provides a perfect environment to support realistic
evaluation of protocols and applications up to medium scale.



Fig. 4: Routing event update overhead
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Fig. 5: Client RTT for GNRS lookups for 200
servers and 100K GUIDs

Fig. 6: Traffic between Rutgers MFR and
transcoder

The GNRS implementation has been evaluated at medium-
scale on the ORBIT grid using the wired infrastructure. The
experiment was intended to evaluate basic metrics for the
distributed system such as: computation cost, server through-
put, query latency and load distribution. Previous simulation
based results [14] had shown that the design could achieve
latencies under 100ms for the 90th percentile of client requests.
Exploiting the 400 nodes of the Orbit main grid, we used
the Jellyfish [18] model to map the real Internet onto the
testbed: each grid node represented an AS, and the number
of nodes for different layers and links between different layers
was proportional to Internet AS-level topology. We analyzed
the real-Internet datasets from DIMES and CAIDA [19],
and generated the network topology based on that. Figure
5 shows some validation experimental results obtained from
such ORBIT experiments, in particular the latency experienced
upon issuing client requests. From the graph, we notice that
90% of the experienced latencies were in the range of 200 ms,
somewhat higher than the 100ms predicted by simulation. We
believe some of this difference can be attributed to the specifics
of the Jellyfish model as mapped on to the ORBIT grid, and
we are now conducting experiments with other topologies as
well.

D. Service Deployment in GENI Based Realistic Scenarios

The GENI nationwide testbed offers an infrastructure with
Internet2 and NLR backbones connecting several university
campuses. The wide area hosts, interconnected by a 1/10 Gbit
core network allows for a realistic deployment and evaluation
of MobilityFirst architecture and protocols. Participation from
access networks and mobile clients at collaborating campuses
when combined with deployments at the GENI core can
establish reasonably large size networks of the order 10s to a
few hundred nodes with realistic wide-area network conditions.
In an effort to provide long term experimentation for the
architecture, MobilityFirst has been assigned a permanent
slice, that provides always running resources distributed over 7
GENI sites. Figure ?? shows the distribution of these locations.
14 Xen VMs (2 VMs per site) each with 1 GB memory and
one 2.09 GHz processor core provide us with the possibility
to run one router per location and use the other node for
application or services. All routers have a core-facing interface
connected to a layer-2 network that connects all seven sites.
This was setup using a multi-point VLAN feature provided
by Internet2’s Advanced Layer-2 Service (AL2S). Routers at
three sites (viz. Wisconsin, Rutgers, NYU) are configured with
a second interface connecting to the local wireless network
(WiMAX). Mobile wireless or emulated clients connect to MF

network through this interface. Routers are each configured
with 500 MB of hold buffer space, and have access to a GNRS
service instance co-located on each of the seven sites locations.

We used the above setup to evaluate the feasibility of
designing and implementing in-network services and deploying
them into a realistic testbed. As an example of these exper-
iments, we will describe a rate-adaptation service aimed at
enhancing DASH video streaming applications mobile devices
that experience variable connection quality. This implemented
transcoding service is deployed into the edge network and
combines both caching and transcoding functionalities. As
introduced in Section II, MobilityFirst offers native support for
a variety of delivery services through the use of service type
and service options. We extended the basic set of name-based
communication primitives to support addressing compute-layer
service type and options. For this particular case an interface
was provided in order to specify the quality of the video
segments as an option in an network extension header. The
routers’ code was extended to take forwarding decisions based
on these parameters.

We deployed a MF-enabled DASH server ran at the Wis-
consin site, while a VLC client was at Rutgers connected over
WiMAX. The VLC client was modified to perform Mobil-
ityFirst content requests instead of normal HTTP requests.
Routers use the previously described how the client link is
monitored at the access router via the information exported by
the WiMAX base-station. Any variation in available bandwidth
due to mobility or load is available almost instantaneously at
the router. As the used client was a fixed node and hence
sees little variation in its access link properties, we emulated
the client mobility by intentionally modifying the bandwidth
reported by the measurement service to drop below the rate
required to support smooth video streaming at the original
encoded bitrate. We used this use case to evaluate feasibility
of integration of services into our network logic. For example
Figure 6 reports the steered traffic and the response traffic
with transcoded segments at the router-transcoder link. It can
be observed how at two different moments, the transcoded
effectively reduced the traffic load on the wireless link.

E. Real World Experimentation with End Users

A contextual messaging application, Drop It, was devel-
oped using the name-based networking abstractions provided
by MobilityFirst, which allows users to drop messages at
particular locations, and to pick up messages left by others at
the same location. MobilityFirst allows locations (contexts, in
general) to be assigned unique names (a GUID globally unique



Fig. 7: Prototype components deployed on the GENI testbed

ID) which help identify them for network operations such as
send, recv or get (for named content retrieval). Locations in
physical space can be defined (or fenced) by a set of GPS
coordinates, for example, and a persistent GUID can be as-
signed to them by a well-known service. Next, by maintaining
meaningful address mappings for a location GUID in the
GNRS, endpoints can send and receive messages to/from this
context. For instance, a mapping of location GUID to the set
of all phones that dropped messages at that particular location
can enable a pure peer-to-peer realization of the contextual
messaging service, where the pick-up can be implemented
as an efficient multicast request to each of the phones by
using MobilityFirsts get API. We run a demonstration of this
application using resources across five of the seven sites within
the long-running MobilityFirst network deployment. The two
edge sites at NYU Poly and Rutgers WINLAB, hosted both
WiFi and GENI WiMAX access networks that were connected
back to the GENI core. Ten Android phones (some with
dual WiFi/WiMAX interfaces), each running the MobilityFirst
protocol stack and the Drop It application were carried around
by volunteers (except two which were static at Rutgers and
remotely accessible) who performed message drop and pick-
up operations at several preset locations on the demo floor.
Location GUID mappings were provided through the use of
QR-code tags to overcome difficulties of using GPS indoors.

While no performance statistics were collected for this par-
ticular experiment, it was indeed useful to understand how user
behavior affected our prototype implementation. One major
was therefor encountered and solved involving a particular
energy saving feature implemented in the WiFi module of the
utilized phones (Samsung Galaxy S2) that triggered while the
phone screen was turned off, negatively affecting the lower
communication protocols of our prototype.

IV. CONCLUSIONS

In this paper we presented our experiences with the exper-
imental validation effort carried out under the MobilityFirst
Future Internet Architecture project. Following an initial sim-
ulation phase, we built a prototype that was deployed in two
different testbeds in order to perform experiments aimed at
providing a deeper understanding of the architecture design.
This experiments ranged from critical services validation at
medium scale to service deployments in real-world testbeds.
In the future, we plan to further explore the use of the protocol
stack in realistic network environments. This will include

three different environments for trial deployments including
a content production and delivery network in collaboration
with a local broadcaster and a public service emergency
notification system in partnership with a broadband wireless
ISP. Moreover, through the open release of the code base
of our protocol stack implementation and management tools,
we plan to enable further community-based evaluation and
experimentation in different federated networks.
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