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1 Abstract
Over the past several decades, the Internet infrastructure has
evolved in many ways and one notable trend is encrypted
transport which renders conventional traffic classification
methods increasingly less effective. In this position paper, we
argue that existing classifiers for encrypted network traffic
are suffering from crucial problems associated with low ro-
bustness against model drifts and inadequate efficiency for
real-life deployment. We propose potential solutions to these
challenges by reducing the feature space required for such
classifiers and exploiting robust network-level features across
multiple datasets across time and space.

2 Introduction
Network traffic classification is a common network manage-
ment task that involves inferring Internet services and appli-
cations. Efficiently and accurately classifying network traffic
allows network operators to perform a wide range of essential
network operations, including capacity and resource planning,
quality of service (QoS) monitoring, traffic prioritization, ma-
licious traffic detection, etc [3, 17, 30, 32, 35–38]. Conven-
tional approaches to traffic classification often rely on net-
work features handcrafted from expert knowledge [27,33,40].
More recent efforts have applied machine learning (ML) to
perform classification, using both classical-learning-based
[6, 10, 12, 18, 20, 21, 29] and deep-learning-based methods
[2, 8, 11, 22, 23, 31, 34, 39, 42, 44, 46]. These methods have
generally performed well when applied to curated datasets
and evaluated in specific contexts—moreover, they have fre-
quently depended on domain-specific features, including IP
addresses and information that is available in unencrypted
packet payloads.

However, the rise of encrypted network traffic [4, 9, 13,
15, 19, 25, 26, 28, 43] now threaten the effectiveness of long-
established network traffic classification methods. In this
position paper, we examine the challenges associated with de-
signing traffic classifiers that are robust and efficient against
pervasive encryption of the application and transport layers.
Based on these observations, we present an opportunity for
the network research community to re-examine this critically

important space, to develop new methods for traffic classi-
fication that are robust in the face of encryption, and more
accurate and efficient on modern network traffic. We also
suggest several possible solutions to these challenges.

3 Why are current encrypted traffic classifiers
not enough?

Existing classifiers focus on accuracy but not efficiency.
Increasing utilization of different network traffic encryp-
tion schemes alter the feature space of ML-based traffic
classifiers by (1) reducing the usefulness of affected fea-
tures or (2) shifting the feature importance distribution,
and the majority of the existing classifiers attempt to ad-
dress these issues by relying on complex deep-learning
based models to avoid manually articulating informative fea-
tures [8,11,18,22,34,39,46]. Unlike traditional methods that
are heuristics-based [1, 27, 33, 40, 45] or classical machine-
learning based [5, 6, 6, 18, 20, 21] which usually depend on a
few pre-selected components of the traffic flows, the complex
nature of these deep-learning models also means that they
typically require lengthy network traffic inputs, such as the
entirety of the packet headers, to make traffic classification de-
cisions accurately. Unfortunately, in a real-world deployment
setting such as an Internet Service Provider (ISP), capturing
and storing large portions of the traffic flows on a large scale
can introduce high overheads in terms of system costs, such
as memory requirements, and as well as unnecessary delays
to network traffic. Moreover, it is crucial for network ad-
ministrators to make classification decisions quickly so that
appropriate follow-up actions can be taken and considering
a broad set of network traffic features can slowdown the in-
ference speed of such classifiers which further reduces their
efficiency.

Classifiers evaluated using closed-world datasets are not
robust against model drift. While most existing classifiers
designed for encrypted network traffic show promising results
when evaluated with closed-world datasets, such classifiers
often fail to remain robust when given newer network traffic
received at different times or locations. To illustrate this issue,



we conducted a sample study to collect TLS encrypted traffic
across a wide range of applications at two different locations
and times (two years apart), and split the collected traffic into
two different datasets (old and new) accordingly. Our study
shows that while we can train ML-based traffic classifiers
to perform well on the old dataset, the performance of such
classifiers degrades severely when applied directly to the new
dataset, even though both datasets contain traffic from the
same set of applications. More generally speaking, while
many existing encrypted traffic classifiers are evaluated using
well-known datasets such as ISCX VPN-NonVPN [14] and
UNIBS-2009 [16], these classifiers are not robust against the
above-mentioned model drift as such closed-world datasets
are not necessarily sufficient to describe what the most up-to-
date Internet traffic actually looks like.

4 What are some plausible solutions?
Utilize classical machine-learning methods to reduce fea-
ture space to improve efficiency. While deep learn-based
approaches seem to be the mainstream approach for designing
classifiers for encrypted network traffic, we found that we
can utilize classical machine-learning methods to reduce the
number of features to consider while obtaining reasonably
good classification results. Reducing the feature space while
maintaining the classification accuracy can effectively lower
the relevant system cost for classifier implementers, because
they need to preserve less traffic information. A plausible
way to reduce the feature space is to rank network-level fea-
tures according to the feature importance as interpreted by the
models and neglect features that are less informative (or have
negative impacts on classifier performance). Evaluated us-
ing prominent datasets, including the QUIC dataset [41], the
ISCX VPN-NonVPN traffic dataset [14], and our collected
TLS encrypted traffic flows (which include video stream-
ing [7], video conferencing [24], and social media applica-
tions), our results show that we can arrive at relatively similar
performance when providing the models with just the top
few features (packet header fields) compared to all features.
At the same time, we observe a reduction in inference time
needed to arrive at classification decisions as fewer features
(i.e. fewer matrix multiplications) are being considered.

Perform statistical analysis on multiple datasets to locate
features robust against model drift. While training and
evaluating models based on a single closed-world dataset can
lead to classifiers that are not robust to potential model drift,
we can try to identify features that remain consistently robust
across datasets and exploit these features when designing
classifiers. Here we define a set of features to be robust when
models trained and validated using this set of features can
achieve similar performance when tested on a new dataset that
it has never seen before. One reasonable way to obtain this set
of features is through statistical analysis/comparison across
datasets and finding network-level features with relatively
consistent values and distributions (for each predicting appli-
cation/service) across the datasets. Providing the models with

this set of robust features allows us to avoid environment-
specific features that are over-fitted to a particular dataset
which can be easily rendered ineffective by model drift.
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