
MFTP: A Clean-Slate Transport Protocol for the
Information Centric MobilityFirst Network

Kai Su, Francesco Bronzino, K. K. Ramakrishnan§ and Dipankar Raychaudhuri
WINLAB, Rutgers University, North Brunswick, NJ 08902, USA

§University of California, Riverside, CA 92521, USA
{kais, bronzino, ray}@winlab.rutgers.edu, §kk@cs.ucr.edu

ABSTRACT
This paper presents the design and evaluation of clean-slate
transport layer protocols for the MobilityFirst (MF) future
Internet architecture based on the concept of named ob-
jects. The MF architecture is a specific realization of the
emerging class of Information Centric Networks (ICN) that
are designed to support new modes of communication based
on names of information objects rather than their network
addresses or locators. ICN architectures including MF are
characterized by the following distinctive features: (a) use of
names to identify sources and sinks of information; (b) stor-
age of information at routers within the network in order
to support content caching and disconnection; (c) multicas-
ting and anycasting as integral network services; and in the
MF case (d) hop-by-hop reliability protocols between routers
in the network. These properties have significant implica-
tions for transport layer protocol design since the current
Internet transports (TCP and UDP) were designed for the
end-to-end Internet principle which uses address based rout-
ing with minimal functionality (i.e. no storage or reliability
mechanisms) within the network. Several use cases includ-
ing web access, large file transfer, Machine-to-machine and
multicast services are considered, leading to an identifica-
tion of four basic functions needed to constitute a flexible
transport protocol for ICN: (i) fragmentation and end-to-
end re-sequencing; (ii) lightweight end-to-end error recovery
with in-network transport proxies; (iii) optional flow and
congestion control mechanisms; and (iv) scalable multicast
delivery mechanisms. The design of the MobilityFirst trans-
port protocol (MFTP) framework realizing these features in
a modular and flexible manner is presented and discussed.
The proposed MFTP protocol is then experimentally evalu-
ated and compared with TCP/IP for a few representative
scenarios including mobile data delivery, web content re-
trieval and disconnected/late binding service. The results
show that significant performance gains can be achieved in
each case.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICN’15, September 30–October 2, 2015, San Francisco, CA, USA.
© 2015 ACM. ISBN 978-1-4503-3855-4/15/09 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810156.2810169.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Transport protocol; future Internet architecture; Informa-
tion Centric Networks; hop-by-hop transport; in-network
storage; end-to-end reliability; flow control; congestion con-
trol;

1. INTRODUCTION
The TCP/IP architecture underpinning the current In-

ternet is based on the end-to-end principle [1] of minimizing
functionality in the network while handling service-specific
requirements such as error and flow control at the end-
points. In addition, the current Internet architecture is
based on the concept of routing between IP addresses re-
quiring a static one-to-one association between hosts and
network locators. While the Internet works well for tradi-
tional kinds of communication, increasing mobility levels,
and emerging mobile content and Internet-of-Things (IoT)
services have motivated consideration of clean-slate Infor-
mation Centric Network (ICN) architectures [2, 3] which
operate on names rather than addresses. Several distinct
architectures for ICN have recently been proposed including
MobilityFirst (MF) [4,5], Named Data Network (NDN) [6],
and XIA [7]. While there are differences in detail, all the
proposed ICN protocols share some common design elements
that need to be considered in the design of transport proto-
cols to be used for end-to-end services. Specific characteris-
tics of ICN include: (a) use of names to identify sources and
sinks of information; (b) storage of information at routers
within the network in order to support content caching and
disconnection; (c) multicasting and anycasting as integral
network services; and in the MF case (d) hop-by-hop re-
liability protocols between routers in the network. These
properties have significant implications for transport proto-
col design since the current protocols, TCP and UDP, were
designed based on the end-to-end Internet principle, which
typically assumes end-to-end connectivity during a transfer
and uses address based routing with minimal functionality
(i.e., no storage or reliability mechanisms) within the net-
work.

Consider first the implications of name-based routing on
transport protocol design. Communication with named ob-
jects, whether content files, devices, groups of devices or
more complex context-based groups is different from con-

ventional TCP connections in the sense that an object may
have multiple end-points because the object may be multi-
homed (i.e., multiple network interfaces to the same device)
or multicast (to multiple devices, each with a different net-
work interface) or multi-copy (i.e., multiple instances of the
same information object can be found at different places in
the network). This indicates that transport protocols need
to be designed to provide appropriate service semantics for
retrieving or delivering such named objects, for example,
in multicast where the information object reaches all the
named destinations or anycast where the object is fetched
from the “nearest location”. A second important property
of ICN protocols is the fact that routers may store informa-
tion objects such as content either for caching or for delay
tolerant delivery. This implies the existence of in-network
transport proxies which are in between the source and the
destination, and the transport protocol should be designed
to take advantage of the in-network copy to provide the de-
sired service efficiently. For example, reliable delivery with
an ICN transport would be able to utilize a copy of the infor-
mation object stored at an intermediate router and avoid the
need for end-to-end retransmission used in TCP. The third
feature of ICN architectures is the fact that in-network stor-
age can be associated with reliable hop-by-hop transmission
of information objects between routers, thus alleviating the
need for strong reliability mechanisms at the transport layer
depending on the type of service desired.

In Section II, we consider the requirements for ICN trans-
port in further detail and identify a set of core transport
protocol functions needed to address an anticipated range
of service requirements. These core transport protocol com-
ponents are developed in further detail for a specific ICN
architecture, MobilityFirst, and several examples of how
these functions are integrated with the named-object net-
work layer are given in Section III. The prototype of MFTP
is discussed in Section IV. Finally, we provide a set of ex-
perimental results based on the prototype and compare its
performance with conventional TCP/IP to the extent pos-
sible. The results demonstrate significant performance im-
provement for several example use-case scenarios.

Our contributions in designing and implementing trans-
port protocols for an ICN architecture with explicit locators,
such as MF, are twofold: (i) we examine a representative
set of delivery service scenarios, and based on them, define
the requirement space for transport protocols for any Infor-
mation Centric architecture; (ii) with explicit locators in an
ICN architecture, much richer end-to-end semantics, such as
reliability delegation, and in-network retransmission, are en-
abled by integrating in-network transport services. We show
that such features are conducive to supporting mobility, and
flexibly and robustly supporting different delivery patterns.
The proposed design is validated using an experimental pro-
totype, with bulk (e.g., video) content and latency-sensitive
web (text, image and video) content delivered over wireless
networks to mobile clients. The general principles of our de-
sign for end-to-end transport, regardless of whether MF-like
locators are used, can also be customized to work with and
bring benefits to NDN as well, e.g., to apply per-hop error
and congestion control to improve transmission efficiency,
and employ router-proactive mechanisms to provide better
and richer mobility support.

2. REQUIREMENTS FOR TRANSPORT
LAYER SERVICE FOR ICN

We first consider four common service scenarios that arise
in information dissemination. These are large file transfer,
web content retrieval, M2M communication and multicast.
Through systematic analysis of these use cases, we identify
the set of transport layer features for an ICN environment
to support each of these scenarios (see the summary of re-
quirements in Table 1).

Large file retrieval. A large file retrieval is abstracted
as a get(content name) socket call [8] in an ICN context.
Clients inject a content request, independent of the content
location, with a get() call, and the network will route the
request to the location of a copy of the content. Then a flow
with a large volume which carries the content is transferred
reliably from the server to the requesting client. This is of-
ten referred as anycast.
Key TP functions required: Because of the large amount of
data to be delivered, file transfer requires: (i) fragmentation
and sequencing at the source, and reassembly at the sink;
(ii) efficient usage of network resources with source rate con-
trol so as not to introduce congestion. Reliable delivery, flow
control, and congestion control becomes more complicated
when the destination is connected to the Internet wirelessly,
and especially when it is mobile. For instance, a wireless
connection is susceptible to fading, may introduce random
losses, and can typically provide a lower transmission rate
than the nominal rate. Further, the imbalance of rates at
different segments of an end-to-end path makes it difficult
to perform end-to-end control at high speeds, with small
amounts of buffering, and to deal with transient disruptions.
This problem can be alleviated by enabling additional in-
network transport features, such as temporary storage for
in-transit data (we call the en-route node with transport
services a transport proxy).

Web content retrieval. In a web-browsing application,
a sequence of content requests are sent by the client to the
server. Each of the requests is for retrieving a constituent
named object of a webpage. Two characteristics are inher-
ent in web content retrieval: i) these requested objects are
generally small in size, i.e. of tens or hundreds of kB; ii)
user experience dictates that the objects must be received
in a timely manner, preferably no more than several hundred
milliseconds, thus making the transfer latency-sensitive.
Key TP functions required: End-to-end error and congestion
recovery need to be provided, but in a lightweight manner,
because any significant setup overhead is not amortized eas-
ily. Flow control is not required due of the limited amount
of data transmitted, in order to avoid unnecessary overhead
contributing to increased latency.

M2M communications. In Machine-to-machine (M2M)
communications, sensor data is by nature idempotent. That
is, if the PDU is lost (due to bit errors or congestion) or it is
delayed beyond the limits of latency for the data, the trans-
port layer need not attempt to reliably deliver that PDU.
This transfer paradigm is captured in a send(dst name, con-
tent name) API with no explicit reliability preference.
Key TP functions required: In such cases, the transport
layer could simply resort to stateless communication (e.g.,

Service scenarios Fragmentation &
resequencing

Reliable
delivery

Lightweight
transport

Flow/congestion
control

In-network
proxy

Large file retrieval X X X X
Web content retrieval X X X
M2M communications X X X

Multicast X X X X X

Table 1: Transport requirements for different service scenarios

LINK LINK

MAC/PHY MAC/PHY MAC/PHY MAC/PHY

NET NET NET NET

TRANSP TRANSP TRANSP

APP APP

Application Logic

Hop-by-hop error &
congestion ctrl

E2E error recovery & flow ctrl

Router with
Transport Proxy

End Host End HostNormal Router

LINK LINK

Storage notification

Flow ctrl
& reTx

Dynamic resolution
GUID-NA

Flow ctrl

Figure 1: Protocol stack and transport layer func-
tionalities

lightweight transport with no error recovery, and minimal
flow and congestion control) to minimize overheads. More-
over, due to power constraints in devices, a sensor node may
not be on all the time. End-to-end control is not always pos-
sible in this case and delegation of transport service guaran-
tees, such as reliability, need to be made to other en-route
nodes. Thus in-network proxy support is desired.

Multicast. A number of popular applications are based
on multicast, such as group-based subscriptions (RSS), tele-
conferencing, online gaming, etc. In a name-based archi-
tecture, multicast can be realized with a send (dst name,
content name) API with the dst name referring to a group
of individual endpoints names.
Key TP functions required: Guaranteeing 100% reliability in
a multicast session is a well-known hard problem. To achieve
reliable transport, the source relies on negative acknowledge-
ment (NACK) from clients to initiate retransmissions. With
the number of subscribers increasing, retransmission has to
be implemented in an efficient manner such that the ACK-
implosion (see [9]) is avoided. This may require aggregation
of retransmission requests in the network, and retransmis-
sion from within the network. Thus in-network proxies are
desired to handle such aggregation and storage of pieces of
contents for retransmission.

3. MFTP DESIGN
MFTP is based on the four characteristics of different ICN

proposals to support the analyzed requirements. Specifi-
cally, MFTP has been designed to operate on top of the
MobilityFirst networking stack [10, 11], while the principles
may be more broadly applicable to other ICN frameworks.
As described in [5], MobilityFirst is based on a clean sepa-
ration of names and network addresses with a logically cen-

Transport

Application/Socket

File A File B

a1 a2 aN b1 b2 bN... ...

a4
a3

b4
b3

Strict reordering Strict reordering

Loose
Relationship

Different files
uniquely named &

separated.

Figure 2: Illustration of named object’s implication
on fragmentation and sequencing. Transport layer
fragments a content into large chunks. Sequential
delivery is guaranteed for each content, but no strict
ordering is maintained for chunks of different con-
tents.

tralized but physically distributed global name resolution
service (GNRS). The globally unique identifier (GUID) in
MF is a flat public key identifier, i.e. a name, which can
be used to represent any network attached object, including
devices, people, groups, content, or context. Fig. 1 shows
the major layers in the MF protocol stack and the role of the
MFTP transport layer above the named-object GUID based
network layer which is supported by the GNRS [11,12]. For
additional details on MF, the reader is referred to [5,8,10,11].

3.1 Fragmentation and re-sequencing
Typically in ICN, a data request is abstracted by an API,

get(content name). In NDN, such a request, called an In-
terest, with an associated relative sequence number, solicits
one segment of a content. In MF, the requestor only sends
one request for a piece of content; the server that handles
the request then segments the content and assigns the seg-
ments a relative sequence number. In any case, sequence
numbers are bound to the named content, rather than the
two endpoints. This has significant implication for the hop-
by-hop transfer and storage capability in ICN, as we shall
see later. With content-centricity, such a sequencing scheme
works naturally for anycast, multicast and multipath trans-
fers. For example, in an anycast scenario, the forwarding
plane decides where the content request should be handled.
The transport layer is oblivious of the server location; rather,
the transport’s functionality of providing ordering and reli-
ability can be fulfilled based on the knowledge of the data
being delivered, using the content names and sequence num-
bers.

On the sender side, the transport layer fragments the ap-
plication data into large chunks1, whose size can be negoti-
ated by the two end-points based on a tradeoff between the

1we use “segments” and “chunks” interchangeably.

Figure 3: End-to-end signaling to recover from in-
network failure

overhead and the fair use of network resources across flows2.
We allow the chunk size to go up to the order of megabytes.
Note that the link layer breaks a chunk into packets to meet
the link MTU requirement, but still logically maintains the
semantics of a “chunk” at each hop. Figure 2 illustrates how
the transport layer would support concurrent reception of
multiple files. As shown in the figure, in-order delivery is
strictly enforced among the chunks of a single transported
file: transport will buffer out-of-order chunk arrivals. On the
other hand, because each file has a unique name, retrieval
of any file is fulfilled by a separate “flow”. Thus there is no
need for strict ordering of receiving files, say, based on the
order of the requests, regardless of where the files originate.

3.2 Coordinated End-to-end error recovery
and hop-by-hop reliable delivery

We use hop-by-hop reliable transfer to move each chunk
from any node to its next hop, and use end-to-end reliability
guarantees to ensure the entire application data, e.g. a file
or content, is reliably delivered.

3.2.1 Per-hop reliability
In traditional transport protocols operating on an end-to-

end basis such as TCP, loss (whether due to errors or con-
gestion) or congestion at a link has to be detected after a
feedback delay, possibly quite a few end-to-end RTTs. After
the detection, recovery mechanisms, such as window reduc-
tion or retransmission, can incur an unduly large penalty
to the flow. Also, due to queuing at routers, and heteroge-
neous transmission technologies employed along the route to
destination, spurious, or premature, retransmissions are not
uncommon [13]. A more efficient way to recover from con-
gestion or error happening at a particular link is through
link level mechanisms. This yields two benefits: i) con-
gestion and errors can be detected and reacted upon more
quickly; ii) reduces the possibility of spurious retransmis-
sions. Hop-by-hop transfer maintains a per-hop reliability
model: each chunk is only forwarded once it has been re-
ceived reliably in its entirety from the previous node. This
reliability model is suitable for ICN due in part to the fact
that the segment of data being transferred is named; more-
over, ICN routers can have storage capability, and can tem-
porarily store the in-transit copy to provide delay-tolerant
delivery, and also cache a copy to serve future requests. In
NDN, each named data item is indeed transferred in a hop-
by-hop manner: upon receiving such a data item, the router

2with MFTP, a “flow” is identified by a (source GUID, des-
tination GUID) pair.

Figure 4: Procedures involved to use in-network
transport proxy to handle destination disconnection
and retransmission: the proxy temporarily stores
chunks when the destination disconnects, and trans-
mits to the client when connectivity is restored as
indicated by the name resolution service.

examines whether an Interest for the data has been received
earlier, and whether it needs to cache the data.

MFTP integrates per-hop error recovery and congestion
control whenever the problem can be resolved locally, and
only invokes end-to-end mechanisms when it is absolutely
necessary, e.g., a router fails and loses all the buffered data.
On each hop, after every chunk that is transmitted, a cor-
responding control message called CSYN is used to explic-
itly request acknowledgement from downstream, which then
replies with a bitmap of reception status for every packet
in that chunk. The transmission for this chunk finishes if
there is no loss, otherwise the lost packets of that chunk are
retransmitted locally following the same procedure until all
packets are received.

3.2.2 End-to-end reliability
Taking advantage of the hop-by-hop reliability of the net-

work, we seek to have a parsimonious end-to-end mechanism
that has minimal overhead (important in mobile wireless
environments) while primarily aiming to recover from node
and link failures. While per-hop recovery concerns about
whether all the packets constituting a chunk are delivered
to the next hop, end-to-end recovery strives to guarantee
all the chunks of the application data are reliably received.
The end-to-end error recovery mechanism is built to be flex-
ible to accommodate application and sender needs (includ-
ing don’t care, NACK, ACK). With a Negative-ACK, i.e.
NACK, the transport reduces end-to-end message overhead,
and the receiver provides notification only when a chunk is
not delivered over a conservatively long period of time (as a
result of a failure that causes the reliable hop-by-hop mech-
anism to lose an acknowledged chunk as shown in Figure
3). It is only for short-sessions (e.g., single PDU delivery)
and for latency-sensitive interactions that the sender would
enable the use of an end-to-end ACK option. With idempo-
tent data transmissions (e.g, sensor data which the transport
layer sends and forgets), the sender may choose to use the
don’t care option.

3.3 In-network transport proxy
One of the challenges for conventional transport protocols

is in dealing with the content delivery to mobile devices,

where mobility results in intermittent connectivity and the
end-to-end connection experiences frequent disruptions. If
the transport protocol has to re-establish the connection,
then the transfer has to re-start and any data already in
transit in the network will have to be discarded. ICN’s ar-
chitecture inherently supports mobility and resolves connec-
tion disruptions in multiple ways. For instance, in NDN,
each data is solicited by an Interest packet; in case a client
moves before obtaining the requested data, it can re-issue an
Interest packet for the same data, which will be delivered to
the new location. In the MF architecture, the network can
take on a more proactive role in re-initiating data transfers
when connectivity is re-established.

To this end, we postulate having routers (or at least a sub-
set of them) which provide in-network transport service such
that the original source can delegate part of the end-to-end
data transfer responsibility. The router, which we call an
in-network transport proxy, would have substantial amounts
of memory, e.g., several GB, to temporarily hold in-transit
chunks when the destination is unreachable. This disruption
may be due to: lack of connectivity to a mobile destination
node, until connectivity is subsequently re-established; al-
ternatively, in M2M communication, when a sensor node
is only powered on intermittently, it may choose to deliver
information chunks to the next hop and then power down.

The mechanisms implemented by such a node are shown
in Figure 4: when faced with the impossibility of forwarding
chunks with the information available at the network layer
(i.e. the router detects that connectivity towards the desti-
nation of a chunk is disrupted), the router pushes up to the
transport proxy layer the relative data chunks. Two rea-
sons might generate this impossibility of forwarding chunks:
(i) the destination does not have an active network address
(NA) binding corresponding to its GUID entry in the GNRS;
(ii) the chunk reaches the destination network given by its
most recent binding, but either the destination has changed
its point of attachment or it has disconnected from the net-
work before the previous NA entry expires in the GNRS
server. As a consequence, the link layer is not able to de-
liver the chunk despite several attempts, and corresponding
CSYN timeouts. In these cases, the chunk is pushed up
to the proxy layer to be temporarily stored. While this is
similar to Delay-Tolerant Network protocols, the innovation
here is the integration of these mechanisms with the support
of dynamic mobility and ICN style named object services.
Note that we differentiate the storage operation here from
buffering and caching. They all involve the action of main-
taining a copy of in-transit data. However, they differ in
their final purpose. Buffering usually resolves the mismatch
between ingress and egress rates, and caching is to serve
future data requests more efficiently. Storage, considered
here, is utilized to provide delay-tolerant delivery to deal
with disconnection or to provide delegation.

We limit the amount of content that can be stored for a
flow. Each (source GUID, destination GUID) pair is limited
to have stored content up to a size S. When a chunk for a
new flow arrives, the chunk will be stored directly if sufficient
space is available for the new flow; otherwise, a chunk for
the oldest flow is evicted to make room for the new chunk.
In other words, an LRU policy is employed for chunk evic-
tion from the storage. Therefore, the operations for storing
a chunk, and for retrieving a chunk from the storage, can
be implemented with O(1) complexity. When the chunk is

stored, a timer is created to schedule future transmission.
Further, a transport layer message, either Store or Drop, is
transmitted back to the original source to notify it of the
intermediate proxy storing or dropping the chunk. A stored
chunk will be scheduled to retry a GNRS lookup to bind
an updated NA to the destination GUID when its storage
timer expires. The chunk will be pushed out if an NA is
found, i.e., destination becomes connected again, otherwise
it will be kept in storage. On the other hand, rescheduling
of the chunks can also be initiated by the original source
of a chunk. As is shown in Fig. 4, when the source re-
ceives a NACK message identifying a chunk as missing, if
it is aware that the corresponding chunk originally destined
to the requesting destination is stored in the network, based
on a previously received Store message, it utilizes this in-
network copy and initiates the retransmission from inside
the network. This is done by the source sending a Push
message to the in-network proxy to trigger retransmission.

Transport proxies also support content producer mobility
by allowing the producer to delegate its end-to-end relia-
bility guarantee to the proxy. For instance, a mobile client
intending to upload a recently shot video can specify in the
pushed data chunk that such a delegation is requested. Be-
fore forwarding the data chunk, the immobile access router
(acting as a transport proxy) will save a copy of the chunk
in order to respond to potential future NACKs.

3.4 Flow control and congestion control
With the hop-by-hop reliable delivery as a building block,

MFTP uses a combination of per-hop back-pressure for con-
gestion control and end-to-end window-based flow control.

3.4.1 Hop-by-hop congestion control
The hop-by-hop back-pressure scheme is built on top of a

back-pressure buffer (of capacity B packets). As illustrated
in Fig. 5, the back-pressure buffer essentially has all the
chunks that are received from the network and are queued to
be transmitted. In addition, between two adjacent routers
on a link, the sender maintains a sending window Wostd,
i.e., number of outstanding packets, that is bounded by the
receiver’s advertised window, Wad. As mentioned before,
following the transmission of a chunk of data, a CSYN mes-
sage is sent, which the downstream node then acknowledges
with a CACK message. The receiver’s advertised window
is piggybacked in the CACK. The number of outstanding
packets, Wostd, is reduced based on the downstream node’s
acknowledgement. Also, whenever the router schedules to
transmit on a particular outgoing interface, it attempts to
transmit as many packets as Wad allows. This greatly im-
proves pipelining.

When the occupancy of back-pressure buffer reaches its
capacity, the router blocks all incoming data chunks. Fur-
thermore, it throttles the advertised window to all of its
upstream nodes. This “congestion signal” eventually prop-
agates back to the original traffic sources in a hop-by-hop
manner, thus eventually limiting the traffic injected into the
network.

3.4.2 End-to-end flow control
Hop-by-hop back-pressure is not sufficient to prevent the

receiver’s buffer from being overrun by the sender’s data
from an end-to-end perspective. Because MFTP does not
require the receiving side to send frequent reception status

Wostd1
Wostd2

WostdN

FIFO queue of all
recvd chunks

…

Interface 1

Interface N

Back-pressure buffer

sent &
ack-ed

sent & not
yet ack-ed

recvd from upstream

Interface 2

Figure 5: Back-pressure buffer and per-hop sending
window.

update in the reverse path (it depends only on NACKs),
the feedback from the receiver is both parsimonious and not
timely for the sender to detect receiver buffer overflow. We
therefore consider an explicit notification from the receiver.
The sender starts at an initial end-to-end sending window
We. For each window’s worth of data chunks, the receiver
then sends one window flow control message, to advise the
sender to maintain, increase, or reduce the sending window
to certain value based on the receiver’s buffer occupancy.
This message will be delivered reliably to the sender. Note
that the sending window is also the atomic unit for the end-
to-end NACK message, thus the NACK and flow control are
fulfilled by a single message (if a NACK has to be sent, i.e.,
some chunks are lost). In the event that this special chunk is
lost due to a node failure, a NACK timeout at the receiver
would trigger the receiver to proactively notify the sender
of the reception status (NACK) and receiver buffer status
(flow control).

Small content transfers are not subject to such end-to-end
flow control, mainly because the transfer will be complete
even before the flow control notification can be generated.
However, small content transfers are still regulated by per-
hop congestion control.

3.4.3 Alleviating head-of-line blocking due to hop-
by-hop transfer

A drawback inherent with hop-by-hop back pressure is
the unfairness caused by head-of-line (HOL) blocking with
FIFO queueing [14]. Consider a chunk at the head of the
queue blocked from being transmitted by a back-pressure
signal from the downstream node. This can prevent chunks
behind it in the queue that is destined to a different desti-
nation that is not experiencing congestion. An alternative
to having HOL blocking is to drop the chunk being back-
pressured, but this has undesirable consequences of requiring
retransmissions when a temporary buffering could overcome
the short-term congestion. Theoretically, per-flow queuing
solves this problem, but scheduling with per-flow queues is
difficult to scale and is impractical with large numbers of
flows. However, the in-network transport proxy provides
some relief to this situation and alleviates the short-term un-
fairness. If a back-pressure signal is received for the chunk at
the head of the sending queue, the transfers of chunks des-
tined to other nodes will thus not be blocked because chunk
at the head of the queue will be removed and pushed up to
the transport proxy layer for temporary storage. The trans-
port proxy will then attempt to transmit that chunk when
the storage timer expires (or is dropped if the chunk is re-
placed in the storage buffer because of the eviction policy
we described above).

Figure 6: Multicast data delivery, small scale (left),
large scale (right).

3.5 Multicast
Multicast is naturally supported by name based architec-

tures. For instance, in NDN, data is forwarded to the re-
questor based on the receipt of the corresponding request:
each router forwards the data on the interface(s) the request
for the data was received on. Multicast is thus fulfilled by
the stateful forwarding plane [6]. In MobilityFirst, a dy-
namically formed multicast group is explicitly identified by
a globally unique identifier (GUID), which can be mapped
into a set of individual clients’ GUIDs or network addresses.

Depending on the scale of multicast group, multicast sup-
port varies. In the small scale case (show in the left side
of Fig 6), during the transmission the source of the multi-
cast data marks outgoing chunks with a multicast service
identifier and selects as destination GUID the one identi-
fying the multicast group. Multicast clients send NACK
messages over a unicast channel and the multicast source
can identify which multicast group a specific client belongs
to. Further, the source aggregates retransmission requests
for the transmitted chunks; it can, either employ multicast
again for retransmission when the number of requestors ex-
ceeds a threshold; otherwise retransmitted data chunks can
be sent using unicast destination GUIDs that identify the
specific nodes that need the retransmitted data.

As the number of participants increases we can exploit
in-network transport proxies to build multiple levels of mul-
ticast group GUID to a set of GUIDs mappings recursively.
This scenario is shown on the right side of Figure 6. In or-
der to limit potential explosion of unfulfilled requests reach-
ing the original source, transport proxies can be instructed
through proper chunk marking, to discard retransmission
requests that exceed a number of traversed proxies without
encountering the missing chunks. In a scenario where reli-
ability is not demanded, the source just use the don’t care
option of the reliability preference.

4. IMPLEMENTATION
Our implementation of MFTP consists of two parts: end-

system transport operations that are implemented on the
MobilityFirst client stack, and an in-network transport proxy
implemented as a pluggable module inside the MobilityFirst
based Click router implementation [15].

Host Stack and API. The client host stack has been im-
plemented on Linux as a user-level process built as an event-
based data pipeline. Apart from the MF transport protocol,
the stack contains a name-based network layer and a reliable
link layer with large chunk transfer. Applications interface
with the host stack through socket APIs that are available

Figure 7: Experimental Setup

as a linkable library and include the primitives send, recv,
and get, and a set of meta-operations. Examples of meta-
operations include those to bind or attach a GUID to one or
more NAs. By specifying the options field in the API call,
an application is able to configure transport parameters such
as the i) desired chunk size; ii) end-to-end reliability prefer-
ence; iii) NACK timeout; iv) willingness to use in-network
proxy.

Router. The MobilityFirst software router is implemented
as a set of routing and forwarding elements using Click [16].
The router implements MFTP transport proxy layer, MF
network layer including intra-domain routing and dynamic
binding using GNRS, and hop-by-hop reliable transfer. The
transport layer (proxy) interacts with the intra-domain route
look up component: if a lookup does not yield a valid next
hop, the chunk is pushed up to the transport proxy. The
transport proxy at the router will hold the data chunk for
some time and attempt to rebind the name with one or more
network addresses. When rebinding is successful, the chunk
is pushed back down to the routing layer for forwarding.

Timers. There are three types of timers used in our im-
plementation: one for triggering the transmission of an end-
to-end NACK message, one for storage, and another one
for link layer retransmission. For guaranteeing end-to-end
reliability, timers are indispensable because a node has to
learn about a remote node’s failure impacting the end-end
path. Previous experience with TCP end-to-end timers have
taught us that timers need to be set loosely so as to reduce
number of false alarms [17,18], and not have a strict depen-
dence of the transport protocol on timers for normal oper-
ations. In MFTP’s design, this goal is achievable because:
(i) different end-to-end service guarantees are dissected and
each timer only handles a specific job; (ii) NACK timers and
per-hop timers are associated with a chunk of data, rather
than a single packet; (ii) the storage timer is only concerned
about disconnection, and is thus decoupled from end-to-end
latency and transferred data sizes, which could otherwise
complicate timer settings.

5. CASE STUDIES AND EVALUATIONS
In this section, we present how MFTP can be used in sev-

eral different service scenarios, and quantitatively compare
it with the performance of conventional HTTP and IP based
protocols.

General experimental testbed setup. We use the OR-
BIT [19] wireless testbed for our experimental evaluation.
Each machine in our experiment is equipped with Intel i7
2.93GHz processor and with 8GB RAM. We use Ubuntu
12.04 with Linux kernel version 3.2. In terms of network-
ing capability, each node has one Gigabit-Ethernet inter-
face and one WiFi interface using Atheros’ ath5k wireless
drivers. Physically all the nodes are connected to a single

layer-2 switch; we use VLAN tags to create desired topol-
ogy to isolate Ethernet traffic. For wireless traffic, we use
802.11g with the data rate fixed at 54Mbps. Access routers
run hostapd [20] to operate as WiFi access points. We dis-
able 802.11 authentication and use manual IP assignment
(no DHCP), just to retain nearly the same amount of over-
head with both MFTP and TCP for WiFi connection estab-
lishment. We considered a topology shown in Fig. 7, where
a client, N4 connects to a server N1 through an access router
N3, which provides WiFi connectivity, and a regular router
N2.

Methodology. We evaluate three types of data delivery
scenarios to compare MFTP with the current TCP/IP based
architecture, in terms of the mechanisms employed, and
their performance. We emulate the end-to-end RTT’s of
local, coast-to-coast and inter-continental communications,
use the emulation tool netem [21] to add 10ms, 50ms, 100ms
RTT between the two routers, respectively. To emulate loss
in a controlled manner, we again use netem to introduce
1% loss. With MF, we run the MF Click router prototype
(mentioned in section 4), and a local GNRS server on both
N2 and N3. The MF client stack runs on N1 and N4. For
specific use cases, we run corresponding applications that
interface with the client stack through the MF API. In the
case of TCP-based experiments, we run Click IP routers
on node N2 and N3, rather than using Linux’ default IP
routing, just to eliminate processing time discrepancies of
Click router compared with Linux routing (though in the
experiments we found Click’s overhead is negligible). TCP
segmentation offloading is turned off as the basic Click IP
router drops TCP packets with size larger than 1500 bytes.
We enabled manual Ethernet header encapsulation on the
Click IP router so no ARP message is triggered during rout-
ing. On the two end nodes, the default version of TCP
on Ubuntu, TCP Cubic, is used, as it is the state-of-the-art
TCP congestion control algorithm and performs better than
other variants [22], e.g. TCP Westwood, including under
wireless scenarios. We configured both nodes’ TCP receiver
buffer to be 2MB, so that it is not a bottleneck in a high
delay-bandwidth path in any of the experiments.

5.1 Large content delivery over wireless
We first look into a large volume data transfer experi-

ment. A 400MB file is requested and transferred. A simple
file retrieval application in MF is running on the two end
nodes. In the case of TCP, we used iperf to generate a flow
of equal size with the maximum packet payload size of 1400
bytes. We repeated this experiment for a number of network
conditions: RTT being 10ms, 50ms, or 100ms, and loss on
WiFi link being 0 or 1%, to explore their effect on both
architectures’ goodput (i.e., application throughput).

Fig. 8(a) shows the average throughput comparisons for
the six different network settings. Both MFTP and TCP’
throughputs are consistently high when there is no loss,
despite varying the end-to-end latency. MFTP is slightly
higher in throughput in the lossless cases. MFTP is signifi-
cantly more robust in the presence of loss, e.g., the through-
put degrades by only 10% when there is 1% residual loss,
with all 3 RTT profiles. On the other hand, TCP through-
put drops significantly when there is loss. For instance, with
50ms RTT, TCP throughput with loss drops to only a quar-
ter of its throughput in the lossless case. Fig. 8(b) shows a

Network setting: (RTT(ms),packet loss ratio(%))
(10,0) (10,1) ,(50,0) (50,1) (100,0) (100,1)

A
v
g

.
th

ro
u

g
h

p
u

t
(M

b
p

s
)

0

5

10

15

20

25
TCP/IP
MFTP

(a) Average throughput comparison for 6 different
(RTT, loss rate) profiles.

time (s)
0 5 10 15 20

In
s
t.

 T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

0

10

20

30

40

TCP/IP
MFTP

(b) Instantaneous throughput (per 500ms) for 50ms
RTT and 1% loss.

Figure 8: Throughput comparison. MFTP is robust
in the presence of loss.

plot of instantaneous throughput (averaged per 500ms) for
50ms latency and 1% loss. MF’s PDU is a chunk of data,
and in every 500ms, it receives at least one chunk (1MB),
even in the presence of loss. With TCP, throughput fluc-
tuate around 5Mbps. This is because the end-to-end con-
gestion window is throttled whenever loss is detected. This
misinterpretation of loss unrelated to congestion unnecessar-
ily penalizes the flow. With MFTP, loss is not considered
a signal for congestion, thus the sending rate is not throt-
tled; moreover, loss happening at the last hop is recovered
locally. Note in this experiment, the client suppresses the
NACK messages because all the data has been successfully
received.

5.2 Transport proxy for disconnection
We evaluate the benefits of using in-network transport

proxies for handling client disconnections in content retrieval.
In the experiments with TCP, an application client issues
one HTTP GET request to retrieve one file. For experi-
ments with MFTP, in order to keep the modifications at the
application end-hosts to a minimum, we developed an MF-
HTTP-MF proxy whose main job is translating HTTP re-
quest and responses into MobilityFirst content requests and
messages and vice-versa. We colocate 2 instances of these
proxies3 with the HTTP components of the system, i.e., on
N1 and N4. We consider the same topology as above. The
end-to-end RTT is set to be 50ms, and no loss is added so
that difference in performance would not be incurred by hav-
ing different mechanisms for error recovery. We use netem
to introduce 100% loss intermittently, so as to emulate client
disconnections. In the experiment, WiFi connectivity is on
for 10 seconds; then is turned off for d seconds; then the
connection is restored. During the first 10 seconds of con-
nection, the client requests a 10MB file at a random time.
The experiment is repeated 30 times for both MF and TCP.
We compare the distribution of file retrieval response times
between MFTP and TCP.

3These proxies are also used for experiments in section 5.3

In Fig. 9(a), all the transfers having a response time of less
than 10 seconds are completed before the disconnection. For
the transfers that experience the disconnection, MFTP has
at least 3 seconds lower response time (at 60th percentile).
With 30 seconds disconnection, as shown in Fig. 9(b), the
difference in response time is about 15 seconds at 70th per-
centile. It is worthwhile to understand the difference in the
approaches taken by TCP and MFTP to dealing with dis-
connection. With TCP, the sender retransmits, based on
a timer whose timeout value increases exponentially when
the disconnection persists. In MFTP, the chunk in-transit
is stored at the in-network proxy. A network address and
next-hop lookup, rather than retransmission, is triggered
when the storage timer for that chunk expires. Thus the
transport proxy takes advantages of the global name resolu-
tion service in MF to learn whether there is a network ad-
dress binding update for a client, and retransmits only when
client is connected. This results in fewer retransmission at-
tempts and more accuracy in the knowledge of end-to-end
connectivity. Fig. 9(a) and Fig. 9(b) together suggest that
MFTP’s reduction in response time is nearly proportional
to the length of the disconnection.

Response time (seconds)
0 5 10 15 20 25 30

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

MFTP
TCP/IP

(a) With 10s disconnection

Response time (seconds)
0 10 20 30 40 50 60 70

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

MFTP
TCP/IP

(b) With 30s disconnection

Figure 9: CDF of response times.

5.2.1 Comparison between network-proactive and
receiver-driven approaches

We perform another set of experiments, with two different
settings of proxy’s storage and client’s NACK timers. The
network-proactive approach was used in the previous exper-
iments, where the NACK timers are set conservatively, and
thus client relies on the network to re-deliver the data once
the network connection is restored. In the receiver-driven
approach, the transport proxy does not re-initiate the deliv-
ery by itself; the client sets the NACK timer aggressively and
explicitly requests retransmission, and the original server
will then remotely request the retransmission from the trans-
port proxy where the data is stored (by sending a Push mes-
sage). As shown in Fig. 10, similar to last set of experiments,

Response time (seconds)
0 5 10 15 20 25 30

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

MFTP, network-proactive
MFTP, receiver-driven

Figure 10: CDF of response times for network-
proactive and receiver driven retransmissions, with
10s disconnection.

half of the transfers complete without experiencing discon-
nection. The long tail of the receiver-driven curve warrants
a closer look: it corresponds to cases when a disconnection
happens right after the client sends out the request. The
content is transferred, but only a small portion gets deliv-
ered because client loses connectivity. The remaining data
is temporarily stored at the proxy. The client has to wait
for the NACK timeout to retrieve the data from the proxy.
Thus, on the client side, whether it is an application or trans-
port that is responsible to setting the end-to-end timer for a
mobile client, a large number of characteristics, such as end-
to-end path quality variations, disconnection interval, and
content size, all collectively make estimating a reasonable
timeout value difficult. On the other hand, retransmission
from inside the network by the transport proxy only con-
cerns itself with the connection/disconnection events. This
improves performance, and more importantly, provides bet-
ter manageability of end-to-end timers in mobile scenarios.

5.3 Web content retrieval
Web content retrieval is also evaluated. We use the same

topology as described before to compare MFTP and TCP’s
performance. In addition to the routers, we run an Apache
server (version 2.2.22) on node N1, and a web browser em-
ulator on node N4 which requests webpages. We reuse the
browser emulator, epload, presented in [23]. We also down-
load the dataset introduced in [23] which consists of the real
webpage objects of the 200 most accessed websites recorded
by Alexa [24] in 2013. Among these we randomly select 40
pages and place them on N1 to be hosted by the Apache
server. In each run of the experiment, the browser emulator
opens up 6 concurrent TCP connections (default settings
in most browsers [23]) and sequentially request the 40 web-
pages, using HTTP 1.1 (also by default). For both MFTP
and TCP, we performed 5 runs of the experiments with end-
to-end RTT of 50ms, and 0 loss or 1% loss.

Fig. 11 are the plots for average page load times (PLT),
i.e. the time between emitting the first HTTP request to
reception of the last byte of last object, for the experiments
with 50ms RTT. Page load time with MFTP is consistently
lower than TCP. In the case of no loss, when there is a
smaller amount of data to be transferred, e.g. page 21, 22,
and 23, with TCP the PLT is about 30% higher than with
MFTP. The difference in PLT can be attributed to several
features of MFTP: (1) MFTP is connectionless, and thus
there is no overhead due to setting up a connection; (2) TCP
identifies different requested objects by differences in se-

Page ID
0 5 10 15 20 25 30 35 40

P
a

g
e

 L
o

a
d

 T
im

e
 (

m
s
)

0

1000

2000

3000

4000

5000

6000

7000

8000 TCP/IP
MFTP

(a) 50ms RTT, no loss

Page ID
0 5 10 15 20 25 30 35 40

P
a

g
e

 L
o

a
d

 T
im

e
 (

m
s
)

0

2000

4000

6000

8000 TCP/IP
MFTP

(b) 50ms RTT, 1% residual loss

Figure 11: Page Load Times (min, average, and max
of 5 runs) for 40 different webpages.

quence numbers of that connection, while MFTP differenti-
ates each requested object by a unique name, therefore HOL
blocking (happens when multiple concurrent HTTP requests
are fulfilled by a single TCP connection [25]) does not occur
with MFTP; (3) each TCP connection“slow-starts”, whereas
with MFTP, short transfers, such as retrieving web objects,
are not subject to flow control and are regulated only by
per-hop back-pressure based congestion control, which al-
lows sender to transmit at full rate as long as no congestion
signal. As can be seen in Fig. 11(b), loss introduces a great
amount of variability with TCP. For instance, for page 21,
the minimum PLT is around 1500ms with TCP, but the
maximum is 6000ms, which is several orders of magnitude
higher than with MFTP. For all the pages, MFTP maintains
minimal variability in terms of page load time.

6. RELATED WORK
Future Internet architectures (FIA): A number of clean-
slate information-centric network architecture designs [4,6,7,
26] have been proposed recently to address challenges faced
by today’s IP network. They differ from each other in how
they realize name-based service: while NDN [6] proposes
a name-based routing approach in which packets are for-
warded directly based on name; some other architectures
(like MobilityFirst [4], XIA [7] and HIP [26]) place object
names outside of the routing plane and uses a name resolu-
tion service to translate names to addresses.

Transport protocols for FIA: There have been a number
of works on transport protocols for FIA, e.g. NDN [6], and
XIA [7]. In NDN, a receiver asks for content by issuing a
group of interest packets, i.e. requests; the corresponding
data chunk is returned by the network in response to each
interest. The NDN community has looked at how the trans-
port layer can be adapted to such a interest-data interactive
and multi-source/multi-path content-transfer pattern. Most
of these works propose that the receiver maintains a Inter-

est window and controls the issuing rate of interest packets
(i.e., ICTP [27]), while others proposes a hop-by-hop Interest
shaping scheme at each router (i.e., HR-ICP [28]). To sup-
port multi-source/multi-path transfer, CHoPCoP [29] pro-
poses to utilize explicit congestion signaling from network
to effectively notify the receiver about network conditions.
In [30], a transport protocol, Tapa, for XIA architecture [7]
is introduced which proposes to manage end-to-end delivery
through segment-by-segment control. We share some of the
techniques with these schemes here for the MFTP design.
In addition, we investigate a broader set of ICN transport
requirements which are derived from a collection of data
delivery service scenarios. This allows MFTP to flexibly
support different applications ranging from receiver-initiated
retrieval, to sender-initiated publish, and from throughput-
sensitive large file transfer, to latency-constrained short trans-
fers of web objects.

7. CONCLUSIONS
This paper presents the design of a clean-slate transport

layer protocol for the MobilityFirst future Internet architec-
ture. The proposed transport layer protocol, called MFTP,
is based on an understanding of the key requirements of
name-based Information Centric Networks. These require-
ments include the use of names rather than addresses for
routing, in-network storage, hop-by-hop reliability and mul-
ticasting as a basic service. Several core transport proto-
col components responsive to the above requirements were
identified and discussed in the context of the MobilityFirst
protocol stack. A proof-of-concept experimental validation
has been developed and used to demonstrate feasibility and
significantly improved performance relative to conventional
TCP/IP for several use cases including large file transfer,
web access and late binding/delay tolerant services.

8. ACKNOWLEDGMENTS
This research was supported by NSF CISE Future Internet

Architecture (FIA) grants CNS-1040735 and CNS-1345295.
We are grateful to Ivan Seskar for his guidance and support
on the ORBIT experiments. We would also like to thank
Chao Han and Feixiong Zhang for their help in the imple-
mentation and evaluation of the prototype, respectively.

9. REFERENCES
[1] J. H. Saltzer et al. End-to-end arguments in system

design. ACM TOCS, 1984.

[2] B. Ahlgren et al. Design considerations for a network
of information. In ACM CoNEXT, 2008.

[3] A. Ghodsi et al. Information-centric networking:
Seeing the forest for the trees. In ACM HotNets.
ACM, 2011.

[4] MobilityFirst Project.
http://mobilityfirst.winlab.rutgers.edu/.

[5] D. Raychaudhuri et al. Mobilityfirst: a robust and
trustworthy mobility-centric architecture for the
future internet. ACM SIGMOBILE Mobile Computing
and Communications Review, 2012.

[6] L. Zhang et al. Named data networking. SIGCOMM
Comput. Commun. Rev., 44(3):66–73, July 2014.

[7] D. Han et al. Xia: Efficient support for evolvable
internetworking. In USENIX NSDI, 2012.

[8] F. Bronzino et al. Network service abstractions for a
mobility-centric future internet architecture. In
MobiArch. ACM, 2013.

[9] A. Erramilli and R. P. Singh. A reliable and efficient
multicast for broadband broadcast networks. In ACM
Workshop on Frontiers in Computer Communications
Technology, 1988.

[10] S. C. Nelson et al. Gstar: Generalized storage-aware
routing for mobilityfirst in the future mobile internet.
In MobiArch. ACM, 2011.

[11] T. Vu et al. Dmap: A shared hosting scheme for
dynamic identifier to locator mappings in the global
internet. In IEEE ICDCS, June 2012.

[12] A. Sharma et al. A global name service for a highly
mobile internetwork. In ACM SIGCOMM, 2014.

[13] S. Mukherjee et al. Evaluating opportunistic delivery
of large content with tcp over wifi in i2v
communication. IEEE LANMAN, 2014.

[14] Mario Gerla and Leonard Kleinrock. Flow control: A
comparative survey. IEEE Transactions on
Communications, 1980.

[15] F. Bronzino et al. Experiences with testbed evaluation
of the mobilityfirst future internet architecture. In
EuCNC, 2015.

[16] E. Kohler et al. The click modular router. ACM
Transactions on Computer Systems, 2000.

[17] L. Zhang. Why tcp timers don’t work well. In ACM
SIGCOMM, 1986.

[18] I. Psaras and V. Tsaoussidis. Why tcp timers (still)
don’t work well. Computer Networks, 2007.

[19] D. Raychaudhuri et al. Overview of the orbit radio
grid testbed for evaluation of next-generation wireless
network protocols. In Wireless Communications and
Networking Conference. IEEE, 2005.

[20] hostapd. http://wireless.kernel.org/en/users/
Documentation/hostapd.

[21] netem: network emulation tool.
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.

[22] M. Li et al. Block-switched networks: A new paradigm
for wireless transport. In USENIX NSDI, 2009.

[23] X. Wang et al. How speedy is spdy. In USENIX NSDI,
2014.

[24] Alexa: the top 500 sites on the web.
http://www.alexa.com/topsites.

[25] J. Erman et al. Towards a spdy’ier mobile web? In
ACM CoNEXT, 2013.

[26] R. Moskowitz et al. Host identity protocol. RFC 5201,
April, 2008.

[27] S. Salsano et al. Transport-layer issues in information
centric networks. In ACM ICN, 2012.

[28] G. Carofiglio et al. Joint hop-by-hop and
receiver-friven interest control protocol for
content-centric networks. In ACM ICN, 2012.

[29] F. Zhang et al. A transport protocol for
content-centric networking with explicit congestion
control. In IEEE ICCCN, 2014.

[30] Fahad R. Dogar and Peter Steenkiste. Architecting for
edge diversity: Supporting rich services over an
unbundled transport. In ACM CoNEXT, 2012.

