
Demonstrating Context-Aware Services in the
MobilityFirst Future Internet Architecture

Francesco Bronzino, Dipankar Raychaudhuri and Ivan Seskar
WINLAB, Rutgers University, North Brunswick, NJ 08902, USA

Email: {bronzino, ray, seskar}@winlab.rutgers.edu

Abstract—As the amount of mobile devices populating the
Internet keeps growing at tremendous pace, context-aware ser-
vices have gained a lot of traction thanks to the wide set of
potential use cases they can be applied to. Environmental sensing
applications, emergency services, and location-aware messaging
are just a few examples of applications that are expected to
increase in popularity in the next few years.

The MobilityFirst future Internet architecture, a clean-slate
Internet architecture design, provides the necessary abstractions
for creating and managing context-aware services. Starting from
these abstractions we design a context services framework, which
is based on a set of three fundamental mechanisms: an easy way
to specify context based on human understandable techniques, i.e.
use of names; an architecture supported management mechanism
that allows both to conveniently deploy the service and efficiently
provide management capabilities; and a native delivery system
that reduces the tax on the network components and on the
overhead cost of deploying such applications.

In this paper, we present an emergency alert system for
vehicles assisting first responders that exploits users location
awareness to support quick and reliable alert messages for
interested vehicles. By deploying a demo of the system on a
nationwide testbed, we aim to provide better understanding of
the dynamics involved in our designed framework.

I. INTRODUCTION
Context-aware systems offer entirely new opportunities for

application developers and for end users by gathering context
data and adapting systems behaviour accordingly [1]. Espe-
cially in combination with mobile devices these mechanisms
are of high value and are used to increase usability tremen-
dously. Context data, usually identified as external factors from
the network environment, can extend across a wide variety
of different fields including for example: environmental con-
ditions, time, location, available energy, network attachments
points, channel conditions, and communicating sources and
destinations. Moreover, human related social states can be
part of the analyzed environment, for example, if a user is
in meeting, busy, or free.

The MobilityFirst (MF) future Internet architecture project
represents a clean-slate Internet architecture which provides
the necessary abstractions for creating and managing context-
aware services. In particular, the architecture enables dynamic
identification of endpoints based on context attributes through
the use of named-object identifiers and global name resolution
[2]. The current Internet primarily supports a primitive to send
data to a specific IP address, which limits applications to
cast all communication intent in those terms. This primitive
is inflexible when the network location of the destination (or
even the principals constituting the destination) is not known

∗Research supported under NSF Future Internet Architecture - Next Phase
(FIA-NP) grant CNS-1345295

a priori. For example, several mobile or Internet-of-Things
applications can benefit from context-aware primitives such
as “send this message to all taxis in the Times Square area”
or “request power consumption readings from devices in my
living room”, which are cumbersome to implement in IP. In
contrast, MF enables context-aware communication primitives
based on attributes more general than just the network lo-
cation and dynamically associates a context identifier to its
constituent principals.

Our strategy is to develop an architecture where we can
name environmental contexts that change where and how
messages are routed and delivered. Application services could
expect from such architecture improvements that span ar-
eas including security, communication efficiency, and energy
management. In order to do so, we identify three strategic
mechanisms that are required to accomplish the set goals: an
easy way to specify context based on human understandable
techniques, i.e. use of names; an architecture supported man-
agement mechanism that allows both to conveniently deploy
the service and efficiently provides management capabilities;
and a native delivery system that reduces the tax on the
network components and on the overhead cost of deploying
such applications.

II. MOBILITYFIRST PROTOCOL STACK
The context services framework design presented in this

paper is based on the MobilityFirst future Internet architecture.
In order to at best understand this design, we first need
to introduce the architecture network protocol stack and its
core technology components, previously presented at different
venues [2], [3]. The MobilityFirst architecture’s main design
centers around a new name-based service layer which serves
as the “narrow-waist” of the protocol stack. The name-based
service layer uses the concept of “flat” globally unique identi-
fiers (GUIDs) for network attached objects, a single abstraction
which covers a broad range of communicating objects from
a simple device such as a smartphone to a person, a group
of devices/people, contents or even contexts. This name-based
services layer makes it possible to build advanced mobility-
centric services in a flexible manner while also improving
security and privacy properties. Network services are defined
by the source and destination GUID and a service identifier
to specify the delivery mode such as multicast, anycast, multi-
homing, content retrieval or context-based message delivery.
A hybrid name/address based routing scheme is used for
scalability, employing a Global Name Resolution Service
(GNRS) to dynamically bind the GUID to a current set of
network addresses (NAs). The GNRS in MobilityFirst is a log-
ically centralized service responsible for naming, security, and
augmenting network layer functionality. The clean separation



Fig. 1: MobilityFirst architecture design and late-binding example. Fig. 2: Service abstractions provided via the client API.

of identity and location of endpoints is the key to achieve
seamless mobility and in achieving trustworthiness ensuring
that identities and their locations can be easily verified.

Data transport in MF is achieved by transferring blocks
in a segmented manner using storage-aware routers unlike
the current Internets end-to-end approach using TCP/IP. A
block transport protocol transports blocks, or large chunks of
contiguous data, in a hop-by-hop reliable manner as opposed
to traditional transport protocols like TCP that transport small
packets in an end-to-end rate-controlled manner. Segmented
transport generalizes hop-by-hop transport to segments or a se-
quence of contiguous links terminated by storage-aware routers
or endpoints. Congestion control across segments follows a
segment-level back pressure approach similar to Hop [4].

For evolvability, MobilityFirst incorporates a virtualized
compute layer that enables novel programmable network ser-
vices to be deployed rapidly into the routing fabric. However,
there are two key challenges to be addressed to make this
approach practical. First, the compute layer must not introduce
significant overhead on the default forwarding path for legacy
traffic. Second, the compute layer must ensure resource con-
tainment for each service and isolation across different services
for security and accountability. The compute layer in MF relies
on such an API similar in spirit to software defined networks,
but goes beyond the basic use case of virtualized network
control and management to offer more general “packet cloud”
services in the data path.

Finally, at the core of the architecture is a name-based
networking abstraction that contrasts with the name-address
conflated communication interface associated with Berkeley
sockets and the TCP/IP stack. All network-attached objects
in the MobilityFirst architecture enjoy direct addressability
through long lasting unique network names or identifiers (we
use GUIDs). This new GUID-centric network service API,
first presented in [5], offers network primitives for basic
messaging (send, recv) and content operations (get and post)
while supporting several delivery modes natively supported by
the MF network such as multihoming, multicast, anycast and
DTN delivery.

III. CONTEXT SERVICE
While the MobilityFirst architecture provides the necessary

abstractions for creating and managing context-aware services,
new mechanisms are required in order to fully exploit them.
Starting from the three strategic mechanisms defined, i.e. an
easy way to specify context, an architecture supported man-
agement mechanism, and a native multi-point delivery system,
three fundamental technology components are exploited to

design the MobilityFirst based context services framework.

Global Name Resolution Service: Recall that in Mo-
bilityFirst the GUID represents an abstract endpoint that is
independent of the network topology. We leverage this inde-
pendence to build contextual networking; our approach is to
overload the GUIDs at many levels of the network. A GUID
could thus represent many abstractions; for example, a cell-
phone, a person, or a group that is defined by context. In
this sense, contextual communications are similar to *-cast
types networking. For example, we could overload a GUID
that names sending a message to a meeting. The system would
have to first translate the GUID into a list of each person in
the meeting. Further translation would be needed to identify
the device each person is currently using. The Global Name
Resolution Service is then the first key enabling technology
that allows us to define context by collecting common set of
network entities under a single name defining the context.

In-network computing capabilities: To enable future
extensions to the network protocol without expensive hard-
ware replacements and disruption, MobilityFirst builds in an
optional and dynamically pluggable compute plane. Examples
of such need are additions of new service types, new principal
types, new addressing structures, or extensions to the end-to-
end security protocol. We envision service providers and net-
work operators to be able to perform relatively simple upgrades
in the form of software updates and addition/replacement of
pluggable hardware modules to extend the data plane function-
ality. Furthermore, we also postulate that such extensibility can
enable third party application service providers (via the ISPs)
to deploy either service end-points or service adaptors that are
both closely integrated with the delivery path and best located
to improve client experience. In-network computing capabil-
ities are perfectly suited to deploy distributed and scalable
management mechanisms to collect contextual information
and manage membership. This last step is fundamental to
the success of the architecture; for this purpose, in-network
deployed services interact with the GNRS to translate collected
contextual information into context names. In order to best
support the distributed nature of the in-network components,
service addressing is of fundamental importance. Generally,
the compute layer will be hosted at key locations, whereas
network delivery mechanisms will allow to select the best
located replica of the service.

Multicast delivery: Multicast protocols have been long
studied in the literature and different protocols and architec-
tures have been proposed to support this type of delivery



mechanisms. While these mechanisms are perfectly suited
for static, tree based communications a different approach
might be required for contextual applications. In particular,
given the highly dynamic nature that defines context services,
due to their multiple evolving factors, more flexible multicast
delivery mechanisms are required. As importantly, in wireless
environments, there is a desire to take advantage of inherent
multicast/broadcast medium to enable efficient point to multi-
point delivery services. The MobilityFirst architecture solves
this problem by implement a lightweight multicast delivery
system that, through name grouping in the GNRS, limits per
group state within network elements taking per hop decisions
on multicast splitting based on Longest-common (LC) looka-
head techniques.

IV. MOBILITYFIRST BASED PROTOTYPE
In order to move towards testbed based experimentation we

developed a prototype that included the main components that
are part of the designed architecture. Due to space constraints,
in this paper we will only introduce the main features of such
prototype as first presented in [3] and the new components
employed in the demo. As the MobilityFirst project addresses
the feasibility of building systems and networks in a clean-slate
design, it requires the development of such components from
scratch. The result of this efforts consists in three main tools:
a GNRS implementation based on DMap’s design [6], a Click
[7] based software router, and a multiplatform protocol stack
and network API for clients. Applications and network services
can be implemented as extensions of these basic elements.

Global Name Resolution Service. A GNRS implementation
has been written in Java to provide a hardware and operating
system agnostic implementation. The server is organized into
several individual modules: network access, GUID mapping,
persistent storage, and application logic.The application logic
serves as a central point of coordination within the framework
of the GNRS server daemon. The network access component
ensures that the GNRS server is able to operate over any
networking layer/technology without changes to the core code.
This replaceable component currently supports IPv4 and MF
routing. The GUID mapping module, relying partly on a
networking implementation, enables the server to determine
the remote GNRS hosts responsible for maintaining the current
bindings of GUID values. Persistent storage is handled inde-
pendently from the rest of the server and exposes only a very
simple interface, mapping to the application messages available
in the protocol. A BerkeleyDB provides both in-memory and
on-disk storage for GUID bindings.

Routers. The software router is implemented as a set of
routing and forwarding elements within the Click modular
router. The router implements dynamic-binding using GNRS,
hop-by-hop transport, and storage-aware routing as presented
in Section II. It integrates a large storage, an in-memory
hold buffer, to temporarily hold data blocks when destination
endpoints experience short-lived disconnections or poor access
connections. For dynamic in-network binding of GUID to NA,
the router is closely integrated with the in-network GNRS
by attaching to a local instance of the distributed service. A
particular instance of this system, implements what we call a
MobilityFirst access router, a router providing access connec-
tivity to clients, supporting different access technologies (e.g.
WiFi, WiMax, Ethernet). Thanks to the modular structure of

Click, we are able to extend the software implementation with
additional logic modules to support programmable network
services. The router software also collects statistics at different
layers of the protocol stack that can be reported through Click’s
control interface.

Host network stack and API. The host stack has been
implemented on Linux and Android platforms as a user-level
process built as an event-based data pipeline. The stack is
composed of a flexible end-to-end transport to provide message
level reliability, the name-based network protocol including the
GUID service layer, a reliable link data transport layer, and a
policy-driven interface manager to handle multiple concurrent
interfaces. The device-level policies allow users to manage
how data is multiplexed across one or more active interfaces.
The previously introduced socket API [5] is available both
as C/C++ and JAVA libraries and implements the name-based
service API which include the primitives send, recv, and get
and a set of meta-operations available for instance to bind
or attach a GUID to one or more NAs, configure transport
parameters in the stack, or to request custom delivery service
types such as multicast, anycast, multihoming, or in-network
compute. Similarly to the router implementation, the proto-
col stack collects and optionally reports traffic and resource
statistics to a backend data repository.

All these components have been designed with flexibility
in mind trying to reduce dependency from specific systems to
a minimum. The set of basic requirements necessary to run
any of these elements is minimal as any x86/x64 machine
(physical or virtualized) running a recent Linux distribution
can host them (the development has been based on Ubuntu
12.04 LTS).

V. EMERGENCY SERVICE DEMO
We use the developed MobilityFirst prototype presented

in Section IV to implement a context services framework
designed around the one described in this paper. The GNRS
and the native delivery mechanisms, together with the newly
implemented in-network context service, enable the Mobility-
First architecture to efficiently deploy context based services
improving current architectures in a variety of ways. In order to
demonstrate the mechanisms involved in implementing context
based services and to showcase some of its benefits, we devel-
oped and deployed a contextual application that implements
an alert system for vehicles assisting first responders. This
service is aimed at providing ways to quickly and reliably
transmit emergency messages to group of receivers identified
by the conveniency of their geographical position or by the
authoritative importance in the emergency matter. To better
understand this consider an example where a car accident
occurs on the roads of a metropolitan area; in this case, three
potential candidates emerge for providing assistance: first, de-
fined by a very small geographical area, other close passbyers
could be informed in order to provide first assistance; second,
based on a larger area, emergency vehicles such as ambulances
could be alerted; finally, given the importance of informing the
central authorities, a police station could be included due to
its relevance on emergency matters.

The system architecture deployed, as depicted in Fig-
ure 3, includes, together with the defining technologies of
the MobilityFirst architecture, two core components: the in-
network compute management framework and an Android



(a) Creation and management of context groups based on geo-
graphical location

(b) Dynamic creation of routing information for multicast based
delivery

Fig. 3: Alert system architecture based on the MobilityFirst context services framework

based smartphone application.

In-network compute management. A Ruby based context
service is implemented to enable in-network computing ca-
pabilities that provide the distributed service described in the
previous section. This service is then deployed in proximity
of favorably located routers by directly connecting it to the
Routers API that provides access to the in-network compute
capabilities. Context based operations are exposed using web
based APIs (i.e. using REST) and provide the core required
management functionalities to create and manage context
groups and report context information (e.g. users current
location). Moreover, to implement the required management
operations, the GNRS API is exploited to interact with the
distributed service. A web interface is also developed for
human based interactions to better understand the presented
demo.

Contextual application. We exploit the available network host
stack and API to deploy the context application components.
In particular, an Android smartphone application has been
developed providing two groups of functionalities: first, the
core alert operations that allow for quickly broadcasting the
alert message to the current context members and to generate
notifications for received emergency messages. Second, man-
agement operations are allowed, providing ways to interact
with the service management framework and create, join and
leave given contexts, by exploiting locally collected GPS
coordinates.

The demo will be centered around three key operations:
1) creation and management of context groups based on
geographical location of active users (Figure 3(a)); 2) dynamic
creation of routing information for multicast based delivery
(Figure 3(b)); 3) evaluation of efficiency in providing the
service. The demo will use the GENI nationwide testbed
infrastructure [8] to deploy 3 different locations from where
wireless nodes (i.e. Android phones) access via WiFi and
WiMax the MobilityFirst architecture. Our current deployment
spans 7 GENI sites across the US. 14 Xen VMs (2 VMs per
site) each with 1 GB memory and one 2.09 GHz processor core
provide us with the possibility to run one router per location
and use the other node for application or services. All routers
have a core-facing interface connected to a layer-2 network
that connects all seven sites. This was setup using a multi-
point VLAN feature provided by Internet2’s Advanced Layer-2
Service (AL2S).

In order to better understand all the dynamics involved in
the demo, a visualization system has been developed using

web-based technologies (e.g. javascript, Google Maps, etc.).
This visualization will provide information about different
components state. In particular it will show the following
information: location of mobile devices and their current status
(idle, sending alert, alerted by other nodes), GNRS entries
that enable context management and multicast routing, traffic
crossing all the nodes in the system and finally important
general events spanning all the networking layers of the
architecture.

VI. CONCLUSIONS
In this paper we presented the details of a context service

framework that exploiting core components of the future Inter-
net architecture called MobilityFirst, allows the deployment of
flexible and efficient context based services and applications.
To demonstrate its properties, a demo using a working pro-
totype has been presented showcasing the core functionalities
of the system, using a set of programmable and mobile nodes
distributed across different sites on a US testbed. In the future
we plan to extend the showcased demo components to support
a variety of context services, allowing other research and
industry players to exploit the available framework to further
push the state of the art.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[2] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst:
a robust and trustworthy mobility-centric architecture for the future
internet,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 16, no. 3, pp. 2–13, 2012.

[3] F. Bronzino, D. Raychaudhuri, and I. Seskar, “Experiences with testbed
evaluation of the mobilityfirst future internet architecture,” in Networks
and Communications (EuCNC), 2015 European Conference on. IEEE,
2015, pp. 507–511.

[4] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, “Block-switched
networks: a new paradigm for wireless transport,” in Proc. of NSDI, 2009.

[5] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri, “Network
service abstractions for a mobility-centric future internet architecture,”
in Mobiarch 2013. ACM, 2013, pp. 5–10.

[6] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin,
and D. Raychaudhuri, “Dmap: A shared hosting scheme for dynamic
identifier to locator mappings in the global internet,” in ICDCS 2012.
IEEE, 2012, pp. 698–707.

[7] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular
router,” in ACM Transactions on Computer Systems. Citeseer, 2000.

[8] “Global environment for networking innovations (GENI), NSF program
solicitation,” http://www.geni.net, 2006.


