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Abstract—Network virtualization enables applications and
users to access network resources in isolation on top of a shared
infrastructure. Through their mechanisms, virtual networks sup-
port performance and security guarantees that would otherwise
not be achievable if relying solely on existing network protocols.
Unfortunately, due to the large variety of network protocols and
architectures that populate today’s Internet, existing virtualiza-
tion techniques have become disparate and different depending
on the segment of the network they are deployed on. Thus, as no
consolidation protocol exists, no solution is available to modern
services and applications to coordinate the resources they employ
to function. Due to the inefficiencies associated with overlay
implementations they have to revert to, it becomes challenging
for these services to meet strict application requirements, e.g.,
low latency.

In this paper, we revisit years of identity based communications
to propose an approach to integrate network virtualization tech-
niques around a single framework: the named-object abstraction.
The presented approach uses unique virtual network identifiers
to describe and implement custom topologies and routing metrics
and achieve desired QoS requirements. This technique enables the
support of an integrated network virtualization with end-to-end
application aware routing on top of the network infrastructure. A
proof-of-concept implementation running on the ORBIT testbed
confirms that the named-object architecture can achieve low
VN processing and control overhead. The proposed solution
achieves an average latency performance improvement of 60%
in comparison to a baseline implementation without compute
and network cross layer optimizations.

Index Terms—Virtual networks, Named-object based network-
ing

I. Introduction
The continuous evolution and improvement of the internet’s

network infrastructure has over the years stimulated the growth
of diverse applications and services. Thanks to increasing
expectations, these applications nowadays demand stringent
performance requirements of different kinds. For example,
emerging applications such as augmented and virtual reality,
as well as remote control of autonomous systems, require
extreme low response time to function, in the order of a
few milliseconds or less, posing orchestration challenges for
the infrastructure resources on top of which they are de-
ployed. As a possible solution to maximize performance, these
applications often rely on compute and storage components
distributed at different locations of the network infrastructure,
e.g., edge clouds. Network level solutions, e.g., Extensible
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Internet components [1], seek to enable more built-in flexi-
bility and control in the deployment of services on top of the
shared network infrastructure and simplify the deployment of
distributed applications and services.

Deploying applications and services on the networking
infrastructure requires managing a distributed collection of
resources spanning across different networking domains, tech-
nologies, and protocols. Meeting the desired requirements
depends not only on these components themselves, but also on
their interaction with the network. Ultimately, these services
can only perform as well as the networks they traverse. Net-
work virtualization is a common technique used to implement
resource isolation over a shared infrastructure, implementing
performance and privacy guarantees for the applications that
are deployed on top. For example, virtualization techniques
can enable resource slicing and seamless service integration.

Ideally, the optimal solution for applications would be
to take advantage of virtualization technologies to deploy a
private network with isolation and performance guarantees
across all of the used infrastructure. Unfortunately, no single
virtualization technology can work across the entire end-to-
end path. The realization of an integrated end-to-end virtu-
alization solution to sustain applications requirements would
demand a concerted effort in monitoring as well as resources
provisioning based on the application demand across domains
and technologies. However, due to the lack of dedicated
coordination mechanisms, existing virtualization techniques
are unable to provide this level of support and connect the
disparate compute, storage, and networking resources.

Two key factors limit the ability to deploy a holistic virtual
network: First, the absence of shared mechanisms for inter-
network communication makes very challenging for service
providers to obtain information about applications’ require-
ments, unless a direct deal is defined between the applica-
tion provider and all network providers traversed. This can
induce to inefficiencies, especially in those scenarios where
mechanisms to support advanced packet delivery are supported
(e.g., 5G celllular networks). Second, the inherent absence
of resource discovery mechanisms across networks makes
it impossible for distributed applications with deployments
spanning across multiple domains to take advantage of ad-
vanced delivery techniques (e.g., load balancing across points
of presence), with the exception of basic overlay solution.
Unfortunately, overlays can result in suboptimal performance



due to the lack of visibility of hosting infrastructure.
In this paper we argue that a more concerted effort to

orchestrate the entire end-to-end path hosting modern ap-
plications is, indeed, possible. Ultimately, as presented by
Balakrishnan et al. [1], the network compute infrastructure
has become sufficiently mature to host application specific
processing on high-capacity networks. But limiting solutions
to overlays might limit the impact of such efforts. This is
especially true in contexts where advanced delivery modes can
be exploited to optimize application performance. For exam-
ple, 5G architectures support by design advanced transmission
mechanisms that can greatly impact application performance,
but a lack of visibility into the applications requirements might
limit their applicability. Towards better integrating application
oriented network processing across all layers of the network
architecture, we argue that any solution should achieve two
fundamental goals:

1) Offer a unified identifier for networks components
to identify applications. Unique identifiers (or tags)
are commonly used to identify flows in virtual network
architectures. Such approach could be extended across
network domains and technologies to offer a unified
virtualization language. Indeed, such integration should
not break compatibility with legacy components, main-
taining the ability for applications to work on top of the
Internet’s best-effort approach when enhanced support
is not available.

2) Offer the ability for applications to specify their in-
tent and requirements. Applications should be capable
of expressing rules and requirements to the network
infrastructure, enabling virtualization technologies to
implement advanced delivery services without relying
on ad-hoc deals between providers. Obviously, no unin-
tended information regarding the application should be
exposed to uninterested third parties.

Towards the goal of implementing an integrated virtu-
alization architecture, we present in this paper a solution
based on named-objects, a network abstraction that exploits
name-address separation to implement advanced network ser-
vices [2]. Name-address separation has inherent benefits in
handling mobility and dynamism that when augmented with
the application state information can be extended to achieve
considerable flexibility in creating a variety of new service
abstractions, thus supporting dynamic resource assignment and
slicing, supporting QoS, and enabling heterogeneous virtual
functions. We extend the named-object abstraction to support
an application-aware end-to-end virtualization that offers the
logical simplicity of L2 virtualization, and flexibility of the
L3 one, with an ability to view the application state at
the network to provide custom resource allocation, dynamic
topologies, and advanced routing of data capabilities. Our
proposed architecture lays its foundation on three virtualization
technologies: (1) the Virtual Base Station (vBTS) to slice
wireless access resources across multiple logical entities; (2)
the Named-Object based Virtual Network (NOVN) for L3

inter-domain connectivity; finally,(3) a cross-layer optimized
routing mechanism called Application Specific Routing (ASR).

The rest of the paper presents our previous work on enabling
virtualization through named-based abstractions across multi-
ple layers of the network architecture and how we combine
it to implement and end-to-end virutalization architecture.
We first summarize existing virtual network techniques and
introduce the named-object abstraction in Section II. Sec-
tion III describes how we virtualize the wireless access with
vBTS. Section IV details the L3 network virtualization and
Section V-A describes how NOVN is extended to support
ASR routing. Section V-B covers how the components are
integrated into end-to-end virtualization architecture. Finally,
the evaluation and results are presented in the Section VI, and
Section VII concludes the paper with a note on future work.

II. Background
In this section, we categorize network virtualization tech-

nologies based on the layer they belong to §II-A. We then
illustrate the named-object abstraction and introduce how it
can support end-to-end application-aware virtualization §II-B.

A. Virtual Network Technologies
Virtual networks research has been carried out for more

than three decades. Table I summarizes the key features and
limitations of some popular virtualization technologies from
both industry as well as academia. We group network virtu-
alization techniques depending on whether they are naturally
supported within a layer of the protocol stack or whether they
are implemented as overlays.
Layers 2 and 3. Native virtualization within the network
stack normally relies on the use of unique identifiers, or tags,
to identify virtual network membership. In particular, tag-
based approaches place unique identifiers at different layers
of the network stack to uniquely identify packet flows. Ex-
ample of this are VLANs [3], [10], and MPLS [11]. Cloud
networks have been one of the main adopters of Layer 2
virtual networks, with VN techniques being used to abstract
the distribution of physical and logical resources within data
centers (e.g., applications, databases, and more), allowing for
flexible management techniques. The core limitation of these
solutions is their limited scope of applicability: employed tags
are limited in size and have validity only within a single
network. For this reason they can solely be used to support
single domain solutions.
Layer 7. Layer 7 overlay based VNs, e.g., VINI [12] or point
to point connectivity between remote cloud locations [13],
represent a flexible way for deploying experimental networks
and protocols on top of the existing infrastructure. Through
encapsulation of network packets on top of UDP packets
and tunneling across participating nodes, they allow for the
quickest solution to implement experimental protocols on top
of the existing infrastructure. With this solution, flexibility and
simplicity come at the cost of additional overhead. Moreover,
residing at the application layer they lack the visibility of
underlying network layer performance parameters, limiting



TABLE I
Virtual Network Comparison

VN Tech. Objective Technique Operation Scalability Resource Advantage Areas of Improvement

VLAN
-1989[3]

Switch-
independent
Host grouping

Frames bear
VLAN ID in
MAC header

L2
Single
broadcast
domain

Static (port-based)
/dynamic (protocol
-based) conf.

Simple,
reconfigurable

Small domain, overhead
and speed; maximum
4094 VLANs

VPN-1996[4]
Secure
connection
in public n/w

Sata encryption
& secure
forwarding

L2/L3 Multi-domain
support

L2TP=PPTP+L2F
sets up tunnels
across the network

Secure across
geo-locations

Complex to configure,
migrate and inter-operate

IEEE
802.1ad
-2005[5]

Switched or
stacked
VLANs

Multiple VLAN
(QinQ) tags in
Ethernet frame

L2
Multi-domain
using
cross connect

Similar to VLAN
Multiple VLANs
in service
provider n/w

Scaling infeasible
(learning MAC of
all users); tags overhead

NFV-2012[6]
Decouple
network
& hardware

Chaining
virtual functions
for services

Seperate
control &
data plane

Scalable if
inter-operable
functions

Commodity
hardware +
virtualization

Low cost, power,
time to market;
high efficiency

IWF to inter-connect
with PNFs;
increased overhead

Renovate
-2017[7]

Failure
handling

Analytics for
faster network
recovery

Booting failed
VNs based
on priority

C++
Implementation Tested on 65 nodes Alternate method Optimization

unavailable

RT-VNE
-2017[8]

Resource
allocation

Online resource
allocations
for VNEs

Divide time
slots, fulfill/
defer requests

C++
Implementation

Tested up to 100
nodes

Coordinated
node/link
mapping phases

VN acceptance ratio

COVE
-2018[9]

Resource
allocation

Virtual
network
embedding

Hybrid VNE
(central control
+trusted nodes)

Used VNE tool
(Embed) – 100
nodes, 500 links.

Mid-size ISP
Topology aware
resource
allocation

Average revenue and
acceptance ratio

their utility in scenarios that might benefit from custom metrics
and deeper cross layer optimization [14], [15].

B. The Named-Object Abstraction
In this paper, we argue that to implement an end-to-

end virtualization architecture, a shared common abstraction
should be provided to all involved layers. Towards this, we
adopt and present the named-object abstraction as a candidate
solution. Named-objects are an abstraction meant to represent
any network entity that could be abstracted as an addressable
network element. This can cover any possible abstraction: from
the original host based abstraction of a virtual link bridging
two interfaces, to recently introduced ones such as contents,
to any potential future abstraction, e.g., context and services.
While name based approaches have already been considered in
the past, they were mostly focused on either solving specific
issues such as mobility [16] or security [17] or to shift the
communication focus to new entities such as content [18].
Named-objects aim to bring a more comprehensive solution
that can enable powerful abstractions and services to underpin
the Internet architecture.
Figure 1 outlines the general approach behind the named-

object abstraction definition: abstracting resources through
separation of names and addresses. Separating names —i.e.,
identities— from addresses has been advocated by the research
community for quite some time [17], [16], [19], [20] and
has inherent benefits in handling mobility and dynamism for
one-to-one communications. If properly employed, names can
also provide additional advantages to facilitate the creation of
new service abstractions that can be used to support advanced
applications.
The named-object approach achieves its goal through three

steps: First, “what” (or “who”) will take part in the communi-
cation is identified through a unique name, or Globally Unique
Identifier (GUID), that is understandable by all parties involved
(e.g., end points, routing elements, etc.). When forwarding

Fig. 1. The Named-Object abstraction applied to different use cases.

is required, names are then resolved to “where” they are
located. While this could be applied at different locations
of the network and in the network stack (e.g., having the
separation at the end points), previous proposals [16], [21],
[22] demonstrated that the use of a globally accessible Name
Resolution Service (NRS) is a suitable approach for this goal,
scaling to globally support the size of the namespace while
supporting the dynamicity of hybrid routing schemes, i.e., less
than 100ms for 95th percentile of lookup operations. Finally,
if the semantical value of such element is known, it can
be indicated through the use of a service identifier properly
located in a packet header, giving an indication on “how”
such packet should be treated. For example, this can express
specific flow requirements or the type of communication in
place (e.g., content retrieval).

III. Virtual Base Station

Layer 2 network virtualization enables the sharing of phys-
ical network access technologies, including both wired and
wireless mediums. Solutions for wired networks have existed
for more than 30 years [3] but, with the vast adoption of mobile
devices, new solutions became necessary to support wireless



Fig. 2. Service flow abstractions on a virtualized base station

technologies. Sharing a wireless access network requires pro-
viding abstractions to share both the networking infrastructure
as well as physical radio resources. Multiple solutions across
different wireless technologies [23], [24], [25], [26] have been
proposed with the goal of supporting multiple co-existing in-
dependent and customizable logical (virtual) wireless networks
on top of a shared infrastructure, including specific designs for
WiFi [27], WiMax [28], and LTE [29] networks.
Integrating a virtualized wireless access network requires to:

provide mechanisms to map network flows to each virtualized
base station (§III-A), specify service classes for QoS purposes
(§III-B), and finally enforce the QoS requirements at the radio
level (§III-C). In this paper, we focus our discussion on our
previous solution aimed at the virtualization of a WiMax base
station [28], which we call Virtual Base Station (vBTS), but
similar design challenges and choices can be applied across
most access technologies. In the rest of the section, we detail
the vBTS design and map it to the named-object abstraction
(§III-D).

A. L2 Datapath To BTS.

Layer 2 frames have to be forwarded from and to the
physical base station. To ensure that the datapath can work in
a wide range of application environments, the frame transport
mechanisms have to satisfy three core requirements: (1) Pro-
tocol independence, i.e., should be independent of any layer-3
mechanism; (2) Slice traffic separation, i.e., some mechanism
by which traffic can be separated across multiple virtual
base stations; Finally, (3) transparency, i.e., the implemented
datapath mechanism should be transparent to the slices. In
our previous work [28] we meet these requirements by imple-
menting an L2 over L3 tunnel. First, protocol independence
is achieved because of tunneling, and the grouping of slice
traffic is achieved by separating packets within different IP
tunnels. This mechanism also allows geographic decoupling of
the virtual base station substrate and the ASN-GW allowing
them to be housed on different networks as long as the required
tunnels are established.

B. Service Flow Abstraction.

Virtualizing a base station requires the ability to map
different service flow types which are defined in the physical
base station to the ones that are exposed to each of the
virtual ones. Specifically, solving the core issue of provisioning
service classes on the physical BTS and the mechanisms for
mapping service classes within the vBTS to the service classes
in the physical BTS. Conventional cellular technologies, e.g.,
WiMAX [30], rely on a connection oriented MAC for provid-
ing quality of service differentiation across wireless clients.
In particular, the MAC scheduler works with logical entities
known as service flows which define a unidirectional flow of
packets either from the BTS to the clients, or the other way
around and allow the definition of certain QoS features, e.g.,
maximum/minimum throughput, maximum delay, and other
features such as the ARQ mechanism.

To extend the service flow idea to the virtual base stations
(vBTSs), we define new virtual service flows. These virtual
service flows are used to map the underlying service flows
in the base station. For the specific WiMax solution [28], the
identifier for these virtual service flows consists of the slice-
id and the flow-number. In our work, we map virtual service
flows to physical service flows are as depicted in the Figure 2.
We define a broad set of service flows in the BTS and reuse
them by mapping multiple service flows from the vBTSs to the
same flow in the BTS. By using a port address classifier for
service flow determination, we can multiplex multiple virtual
service flows from different vBTSs on the same service flow
in the BTS. This provides an opportunity for conservation of
physical service flows at the BTS.

C. Radio Isolation

Once the virtual service flows from the vBTSs have been
mapped to the physical radio, we need a mechanism by which
we can limit the amount of total radio resources consumed by
the virtual service flows within a slice. The problem can be
formulated as the amount of time allocated to a single flow
or wireless client. Where airtime is defined in terms of the
set of time and frequency blocks of the radio. To enforce this
radio airtime fairness across slices in WiMax, we proposed the
virtual network traffic shaping mechanism (VNTS) [31]. This
mechanism is responsible for adaptively determining usage of
resources by every slice slice and limiting the traffic flowing
into the BTS scheduler from every slice.

D. Named-object Based L2 Virtualization

We previously described the three mechanisms required for
implementing L2 network virtualization: datapath tunneling,
service flow mapping, and radio isolation. Ultimately, all
three components require mapping virtualized resources using
flow information (e.g., IP pairs or slice-id/flow-number). Both
techniques can be implemented by relying on a unified named-
object abstraction and two built-in mechanisms: (1) GUIDs
are used to uniquely identify the resources mapping across
layers; (2) Information regarding the virtual network is stored



in the NRS, storing information on the intrinsic requirements
to apply to the local flows.
In our previous work, we extended the vBTS framework

to implement L2 network virtualization mapping via named-
objects [32]. In our solution, we implemented a push-based
mechanism, where a global service resource manager commu-
nicates with local virtual network controllers to inform them
about upcoming traffic classes and the creation of their entries
in the NRS. During the setup phase, the service resource man-
ager initiates the setup by pushing to the participating nodes
the unique identifier that characterizes the Virtual Network.
The unique tag, called Service ID in our work, is used to
notify the local controllers how to identify the GUID that will
be found in packets belonging to the VN. In the following
step, the local network controller creates the requested service
specific vBTSs by configuring the physical BSs and network
equipment in the backhaul.
In conclusion, this process closely reflects common tag-

based virtualization techniques, commonly used in wired
network environments. We extend this approach to cellular
networks by supporting a logically centralized name reposi-
tory that permits mapping local resources across networks to
specific service requirements.

IV. Native L3 Virtualization

Virtual Networks are widely used to manage networks
inside the Internet architecture. Thanks to their ability support
the illusion of a customized network with a user-specified
topology, they enable the ability to match deterministic QoS
characteristics [33], a key requirement for modern applica-
tions. Unfortunately, existing VN solutions lack the ability
to synchronize resources across multiple network domains,
bypassing the inherent need for services and applications
to interconnect distributed computing resources (e.g., edge
clouds) spread across multiple network vantage points. Overlay
based solutions solve this problem, but at the expense of
increased overhead and lack any access to the underlying
network environment.
Ideally, VN solutions should work across multiple network

domains to offer service providers the ability to coopera-
tively exploit network virtualization to enhance distributed
service architectures enabling the same level of integration
and performance guarantees as single domain virtual networks.
From this analysis, we identify the network layer as the right
level to host a Virtual Network design that can work across
network borders. Layer 3 is by definition where protocols
are used to interconnect networks resources. Extending it
to support virtualization provides the most natural solution
to conveniently support interconnecting resources that span
multiple networks.
In our previous work [34], we presented the Named-Object

Virtual Network architecture (NOVN), a solution that addresses
the fundamental issues of virtual network management and
deployment support at the network layer (L3) of infrastructure.
Figure 3 lists the set of core design operations that are
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Fig. 3. NOVN design

at the base of the framework. NOVN exploits the named-
objects abstraction to support network virtualization at Layer
3: NOVN takes advantage of the availability of a globally
accessible NRS capable of storing mappings from names to
list of values as well as the flexibility of accessing names
and addresses as part of a network header to implement a
unified virtualization language that can be exploited across
networks. The next paragraphs highlight NOVN’s main de-
sign characteristics: (1)The use of named-objects to define
the VN topology (§IV-A); (2) The routing and forwarding
mechanisms (§IV-B); and, (3) How QoS rules are enforced
in the participating routers (§IV-C). Finally, we discuss how
the proposed architecture could be incrementally deployed on
the current network infrastructure (§IV-D).

A. Logical Definition of a VN through Naming.
NOVN simplifies the definition of the virtualized logical

layer through information offloading to the NRS. This is done
as a three step process: first, 1) a unique identifier is assigned
to the VN and a mapping from such name (VNID) to all
participating resources is stored in the naming service (red
box in the Figure); referenced resources are identified with
a name that has meaning only within the limits of the VN
logic —i.e., they are unique and not shared across different
VN instances; this provides the dual function of simple access
and distributed information recovery. 2) Each VN resource
name, is then mapped into two values: a) the name identifying
the resource the virtualized element is running on top and
b) the list of its neighbors. Finally 3) these identifiers are
mapped into physical a Network Addresses (NA) allowing
for normal forwarding operations. Fully defining the network
topology through naming allows to solve two core issues to
be handled separately: the local problem of mapping virtual
to physical resources and the global problem of coordinating
the virtualized logic across domains.

B. Routing & Forwarding.
Routing information is exchanged across nodes through

control packets encapsulated accordingly in order to reach
participating nodes. Similarly, data forwarding happens on
a hop-by-hop manner across routers of the virtual network.



When a data packet reaches one of these routers and a routing
decision is taken, the packet is encapsulated within an external
network header that contains information to reach the next VN
router (shown in Figure 3). At nodes not participating in the
protocol, normal routing decisions are taken using the external
network header. As names identify each hop, forwarding can
happen independently from the physical network configuration.

C. QoS Support.
To support QoS control and network slicing, NOVN intro-

duces the concept of a VNID based mapping technique. The
resource management is achieved by marking the incoming
packets and then classifying them according to their VNIDs.
The classified packets are stored into a buffer which are pulled
by a bandwidth shaper at a specified rate before sending at the
output port. This simple VNID based classification and shap-
ing technique enables NOVN with the resource provisioning
and traffic shaping, and therefore aids in the network slicing.

D. Incremental Deployment
The presented NOVN design relies on numerous function-

alities available if deployed on top of a named-object based
architecture, e.g., MobilityFirst [20]. This includes: (1) packet
network headers with dedicated space for accessing object
names and (2) addresses and service identifiers that enable hy-
brid routing. While these functionalities simplify and enhance
the framework design, and allows operating without the need
for any additional overlay protocol, alternative solutions can
be considered to incrementally deploy NOVN on the current
network infrastructure. We identify two different approaches:
Overlay. Fully overlay approaches represent a flexible way
for deploying experimental networks and protocols on top of
the existing infrastructure. Through encapsulation of network
packets on top of UDP packets and tunneling across participat-
ing nodes, they allow for the quickest solution to implement
experimental protocols on top of the existing infrastructure.
With this solution, flexibility and simplicity come at the cost
of additional overhead. The named-object abstraction helps
taking advantage of the abstraction layers presented to simplify
the implementation requirements for such solutions. First, as
the network address that represent tunnels are overloaded into
the GNRS, no need to define a-priori tunnels is required,
leaving forwarding decisions to be dynamically resolved at
running time, as needed. This approach is similar in spirit to
LISP [16], where multiple encapsulated headers can be used to
traverse networks and reach participating routers, but extends
the base name space to provide the more advanced named-
object abstraction.
Shim Layer. Balakrishnan et al. [1] proposed to employ a
service layer, called L3.5, in between the network layer and
the above protocols. This new layer has the role of supporting
advanced network delivery mechanisms and the direct ad-
dressing of computing services at the edge of the network.
Similarly, the named-object abstraction used by NOVN could
be implemented in such shim layer, integrating source and
destination names, as well as concepts such as the VNID. In
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on Net Metric 
and App State

Fig. 4. Application Specific Advanced Routing in NOVN

this case, packets are tunneled between hops and at each step
nodes use the shim layer to obtain the name information and
continue the forwarding process.

V. End-to-End Virtualization
Mobile cloud services provide a scalable and dynamic way

to support emerging technologies, e.g., as IoT (Internet-of-
Things), and applications, e.g., augmented or virtual reality.
Edge clouds require dealing with a mix of computing and
networking resources with complex cross-layer interactions
and considerable heterogeneity in both networking and com-
puting metrics across the region of deployment. Conventional
large datacenters have addressed this problem by requiring
uniformity in the network fabric and using software-defined
network (SDN) technologies to assign resources in a logically
centralized manner. However, for a distributed architecture, a
key requirement arises due to the need of dynamic allocation
of cloud processing requests across available edge computing
and networking resources [35]. Further, edge clouds promise
to support tighter closed loop low latency applications which
requires a seamless integration of services with the network
entities whose performance can be monitored, reported, and
enhanced. The listed requirements therefore require designing
mechanisms that can blend service state parameters into the
network to create a fully virtualized end-to-end QoS-enabled
system.

In the remaining of this section, we first present ASR §V-A,
the underlying technology used to address computing points
distributed in the network. Finally, we discuss how all com-
ponents are integrated into an end-to-end virtualization archi-
tecture §V-B.

A. Application-Aware Routing
To support edge cloud based services and applications, we

implemented into NOVN advanced routing and forwarding
mechanisms through a technique called Application Specific
Routing (ASR) [36]. ASR defines a mechanism aimed at
exploiting a comprehensive set of cross-layer information
from both network and application layers to enable custom
delivery mechanisms, giving service providers the flexibility to
incorporate parameters which allow for utilizing information
above the network layer for routing decisions. For example,
consider the case of a service deployed at multiple locations
across different domains: application state could be exploited
to implement advanced anycast delivery based on network
metrics as well as service load at the end points.



Fig. 5. Overview of an application-aware Full Stack Virtualization architecture

Two key technology components are required and intro-
duced into the NOVN framework to support ASR: (1) the
ability to aggregate multiple service instances under a single
object name, a natural extension of the named-object abstrac-
tion. (2) the ability to make application nodes participate
in the routing protocol by sharing their application state
through the network API. NOVN supports the first one by
offloading the list of participant locations under a single name
into the name resolution service. The second component is
supported through the implementation of a custom routing
protocols deployed on top of any underlying infrastructure and
integrating end point APIs to push application state into the
VN.
The support of advanced cross-layer routing mechanism

is illustrated in the Figure 4. Consider the scenario where
a collection of servers offer a service to its clients. In
this scenario, NOVN and ASR provide the base to deploy
such distributed tools by: (a) allowing push of state to
participating nodes and (b) make use of the named-object
abstraction to support advanced anycast delivery to service
instances based on both network and application metrics. The
state information distributed across and within the network
consists of routing metrics for full-stack virtualization such
as latency (applicaition-level requirements), inter-edge cloud
bandwidth (measured/estimated), server workload (utilization),
server compute capacity (in GFLOPS [37]), and the router
buffer size (for backpressure and flow control). Thus, at the
distributed branching locations, routers can then take informed
decisions thus providing low-latency and scalable support.

B. Dynamically Configuring a Name-Based Virtual Network

The different architectural components presented are orches-
trated to create an end-to-end virtualization that can fulfill
low-latency requirements of future applications holistically
using compute, networking, and storage virtualization. To
achieve a fully functional architecture a series of coordination
techniques are required among the three core components.

The key integration point is a mechanism for building an
integrated virtual network by bridging a named-object based
virtual network on the entire end-to-end path.

Figure 5 shows an overview of the virtualization framework
developed and its core components. The architecture workflow
can be summarized into three phases: (1) QoS managment, (2)
metric injections, and (3) clients association.
End-to-end network QoS management. The first phase
consists of the end-to-end VN setup phase. In this phase, a
centralized or distributed resource manager is in charge of
initiating the VN setup by pushing to the participating nodes
the definition of requested resources and the unique identifier
that characterize the Virtual Network, i.e., the VNID. This
configuration propagates to both the network routers as well
as to the access network which sets up the physical BSs and
backhaul to integrate the QoS requirements of the VN. Finally,
the unique tag is then used by the network resources to identify
packets that belong to the VN.
Service metrics injection. Once the VN network topology
is established, service end points use the ASR protocol to
propagate the compute performance indicators, e.g., a function
of server load or its compute capacity, to the participating
virtual nodes. This information is used to compute and keep
up to date the ASR routing tables that implement the service
QoS specific delivery mechanisms.
Clients association. Finally, the clients of the service associate
with the ingress VN node at the access network. The device
unique identifier and its MAC address are registered in the
entry point of the network so that the virtualized wireless
technology can apply the transmission policies requested at
configuration time. Once the association is completed, the end-
to-end application service tasks can benefit for the datapath
delivery mechanisms built into the VN.

VI. Evaluation
We evaluate an instance of the end-to-end named-object

based virtualization architecture via a prototype deployment.
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Fig. 6. Experimental Scenario

This work was done in collaboration with NICT Japan, in a
series of experimental ORBIT testbed evaluations first initially
by Nakauchi et al. [32]. Our prototype integrates two com-
ponents: (1) a WiFi based virtual Base Station (vBS) [27],
a virtual network framework for L2 WiFi networks; and
2) the ASR enabled NOVN prototype [34] for L3 network
virtualization with service aware routing mechanisms.
Figure 5
We model an experimental scenario where a Cyber Phys-

ical System (CPS), a typical application that requires strict
service response time, sends compute requests to a service
deployed using edge clouds. In the deployment, multiple
service instances are present are across different networks
and are interconnected using our virtualization architecture.
We emulate the CPS application by generating closed-loop
(round-trip) UDP traffic at periodic time intervals. In our
experiments, we deploy a CPS-specific virtual network that
shares the infrastructure with non-CPS traffic that is treaded
in a best-effort fashion. When the dedicated vBSs services are
activated, CPS and non-CPS traffic are completely isolated and
the CPS response time can be reduced. On the other hand,
without an active virtual network to handle CPS traffic, the
shared bottleneck causes an increase in the response time.
We emulate edge computing cloud servers using nodes of

the ORBIT infrastructure. Every 10 seconds, each server ran-
domly chooses a server load from a preconfigured parameter
set, i.e., {0.2, 0.4, 0.6, 0.8}, linearly increasing processing
times by {20, 40, 60, or 80} ms. Participating servers announce
their load every two seconds to the VN routers. Thus, the ASR
routing table is updated accordingly. When the ASR is activate,
NOVN routers forward CPS traffic to the less-loaded server.
We setup three CPS terminals and 12 non-CPS ones per

physical base station. We configure two physical base stations,
i.e., 30 terminals are configured in total. This means that when
the VNs are enabled, the CPS-specific VNs accommodate six
CPS terminals and the remaining 24 non-CPS terminals are
accommodated by the non-CPS communication channels. On
the other hand, without VNs, each physical BS accommodates
three CPS terminals and 12 non-CPS ones. We generate non-
CPS traffic in the form of 100KB data units transmitted every
second by each non-CPS terminal. Finally, the the traffic load
offered to the 12 non-CPS terminals is 9.65 Mbps.
Figure 7 shows the cumulative distribution function (CDF)

of CPS response time. 300 data units with 25KB size are
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Fig. 7. CDF of CPS Response Time (Data Unit Size = 25KB)

generated in this experiment. We notice that the combination
of vBS, NOVN, and ASR outperforms all other cases. In our
results, we focus on response times of less than 100 ms —
i.e., the time required for the human brain to perceive and
interaction as instantaneous. In particular, we focus on how
many data units meet the requirement. In the case of vMCN,
i.e., (vBS, ASR) = (on, on), 94% data units achieves less than
100 ms response time. On the other hand, in the case of (vBS,
ASR) = (off, on), (on, off), and (off, off), the value decreases
to 85%, 74%, and 46%, respectively. These results show ASR
has larger impact to lift up the CDF line, We can conclude the
vMCN can support up to 94% CPS cycles under the set goal
of 100 ms, and outperforms the baseline system by almost 2x.

The specific percentile response time is also an important
performance index to evaluate a real-time system. We evaluate
the performance in the congested WiFi environment, we de-
termines to evaluate 90 percentile response time. In the case
of (vBS, ASR) = (on, on), the 90 percentile response time is
80 ms. On the other hand, in the case of (vBS, ASR) = (off,
on), (on, off), and (off, off), the value increases to 106 ms,
105 ms, and 113 ms, respectively. These results show vBS
and ASR have approximately the same level of impact. We
can conclude the vMCN can achieve less than 100 ms for 90
percentile response time for 25KB CPS data units.

VII. Conclusions

This paper presents an approach to deploy integrated vir-
tual networks using the named-object abstraction to create
a holistic end-to-end virtualization platform. We exploit the
inherent benefits of the named-object network abstraction to
handle dynamic network mapping and resources reallocation
across network technologies. Further, the framework design
is augmented with core extensions such as application-aware
cross layer routing (ASR) and QoS support, providing an
architecture that can seamlessly support future application
requirements. An evaluation is carried out on the ORBIT
testbed for a sample application running over an emulation
of an edge cloud network infrastructure. Performance results
demonstrate a latency performance gain of as much as 60%



when compared with the baseline implementation without
cross layer optimizations.
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