
Model Placement for Quality Inference of Video
Streaming Traffic over a Cellular Network

Francescomaria Faticanti⋆, Loïc Desgeorges⋆, Rémi Watrigant⋆, Thomas Begin⋆, Francesco Bronzino⋆†
⋆ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, LIP, UMR 5668, 69342, Lyon cedex 07, France

†Institut universitaire de France
Email: {firstname.lastname}@ens-lyon.fr

Abstract—Monitoring the quality of streaming video applica-
tions is important for Internet service providers (ISPs) to detect
network issues and facilitate capacity planning. Machine Learn-
ing (ML) inference models have emerged as an effective solution
to determine service quality using network traffic. However, while
much focus has been on enhancing model performance, little
attention has been given to deploying these models across entire
networks. This paper introduces a new placement approach of
quality inference models and their associated tasks to enhance the
monitoring of video streaming applications over an entire mobile
traffic network. Starting from the observation that inference
tasks require the deployment of multiple components to, first,
calculate input features from raw traffic, and then execute the
inference models, we define the placement problem as an integer
programming problem and, given its NP-hardness, we provide
a heuristic solution, experimentally close to the optimum, based
on the relaxation and the rounding of fractional solutions. We
highlight that decoupling these components for the inference of
network traffic can be beneficial in terms of total accuracy of
the ML inference tasks. Finally, we experimentally show that
our solution outperforms state-of-the-art placement techniques
by ~30% of accuracy of the deployed inference models.

I. INTRODUCTION

Video streaming is the dominant application on today’s
Internet, representing over 65% of all network traffic [1]. For
Internet Service Providers (ISPs), monitoring video Quality of
Experience (QoE) metrics is essential for making informed,
fine-grained decisions about network operations, such as ca-
pacity planning and resource provisioning [2]. However, with
the widespread adoption of end-to-end encryption, ISPs can
no longer directly access video quality metrics from traffic
data [3]. Recent research suggests that data-driven insights
using Machine Learning (ML) models offer a promising
alternative for monitoring traffic quality [4]. While significant
efforts have focused on enhancing the predictive capabilities
of these models, there has been limited consideration of how
different model deployment strategies may impact overall
model performance.

ML-based traffic analysis pipelines involve multiple func-
tional stages, typically beginning with the ingestion of raw
network traffic data and ending with a prediction of specific
quality characteristics, such as resolution or startup time. In
the initial stages, raw traffic data is captured and transformed
to derive features and representations that serve as input for
the ML model [5], [6]. Subsequently, these features are fed
into inference models to predict the quality of the moni-
tored video [4], [7]. Each stage in the pipeline has specific

computational and networking requirements that depend on
the chosen inference model. The demands for processing raw
traffic vary with the type of representations required: simpler
representations (e.g., packet counters or average throughput)
are less resource-intensive than more complex metrics like
tracking packet loss within a TCP flow [5]. Additionally,
model execution entails memory and processing requirements
that depend on the size and complexity of the ML model
used for inference. When deploying such a pipeline, it is
essential to account for all these requirements to ensure
optimal performance and resource allocation. It is worth to
stress, as we discuss in detail in Section IV, that such a
monitoring process does not have a significant impact on the
actual quality metrics that ISPs aim to infer.

To accurately monitor video quality metrics, the inference
pipeline must be deployed within network infrastructure re-
sources. Given the high volume of traffic passing through the
network, a centralized processing approach (e.g., cloud com-
puting) would quickly lead to network congestion, rendering
necessary to solely leverage edge resources. Unfortunately, the
limited computational capacity at the edge demands careful
deployment strategies that starkly differ from the placement
strategies present in the literature. Standard applications or vir-
tual network placement solutions presented in the literature [8]
are not suited to the large number of different model variants
available (given by the model type, the hardware requirements,
or the subset of hyperparameters chosen for training of the
model [9]). This adds new levels of computational complexity
to the search space of the optimal placement. There exists
more recent work focused on the specific challenges of model
placement [9]–[11]. However, these approaches primarily ad-
dress the placement and execution of the inference model
itself, without considering the essential steps required to
preprocess and transform raw network traffic for input to the
model. As a result, they overlook the added complexity of
handling traffic data ingestion, feature extraction, and data-
transformation processes that are critical for accurate inference
but place additional demands on network and computational
resources.

In this paper, we show that decoupling the stages of the
inference pipeline leads to a higher deployment flexibility,
enabling operators to achieve higher monitored accuracy in the
estimation of video quality metrics from encrypted traffic. We
formulate such a problem and prove that it is NP-hard. We also
propose an integer linear programming formulation and design

an efficient heuristic that presents near-optimal performance.
Overall, the novelty of this work resides in the introduction
and the study of the inference placement problem for video
streaming. Our main contributions are summarized as follows:
1) We introduce the problem of inference placement for
the monitoring of video streaming traffic at the edge of the
network and provide a formalization of such a problem and a
characterization of its computational complexity (Section II).
2) We design a heuristic solution based on the relaxation of the
integer problem and on a rounding procedure for the fractional
variables (Section III).
3) We prove on realistic cellular data that such an approach
outperforms the state-of-the-art idea of treating monitoring as a
unique and atomic module, showing an improvement of ~30%
of accuracy of the inference models deployed (Section IV).

II. INFERENCE PLACEMENT PROBLEM

A. Description

The goal of a video quality monitoring pipeline is to
estimate with the highest possible accuracy the quality of the
video flows received by the users of the network. Quality
metrics such as startup delay and video resolution affect the
users’ experience and represent the main target for monitor-
ing pipelines applied to video flows [4]. The monitoring is
performed through two main components that correspond to
the previously described stages: i) the capture, processing,
and transformation of raw traffic into data representations;
we call such component the feature extractor (FE). ii) The
execution of the inference model; we call such component
the inference model (IM). The final accuracy of the pipeline
strictly relates to the accuracy of the model chosen to perform
the inference. More complex models achieve better accuracy
but might exceed available resources rendering impossible to
process all video flows traversing the network.

Figure 1 depicts an example of the main problem applied to
a cellular network. In this context, we have an infrastructure
composed by different base stations (BSs). Such BSs are
co-equipped with servers offering computational capabilities
(CPU, RAM). Different BSs can be interconnected in different
ways depending on the particular topology of the cellular
network. In this work, we consider that BSs are divided
into clusters. Within the cluster BSs are directly connected
by a switch in a star topology (we show two clusters in
Figure 1). This represents the typical structure of urban cellular
networks [12], [13].

In this scenario, a video service provider delivers video
flows (illustrated by the red line in the figure) to users via
the cellular network. Each flow reaches a BS for delivery to
users. To monitor these flows, the network operator deploys
the pipeline comprising the Feature Extractor and Inference
Model on the network. The FE of a given flow can be placed
on any BS within the same cluster of the BS it arrives to. If
the FE is located on a different BS from the one receiving the
original traffic, the flow must be mirrored from the switch to
the designated BS, incurring bandwidth consumption on the
link between the switch and the BS (see the green line in

Fig. 1: To monitor the video quality of the original video flow (➊),
the ISP must deploy an inference pipeline that consists of a feature
extractor (➋) and an inference model (➌) with a reduced traffic
between the two components (dashed green line). Since the FE is
deployed on a different BS with respect to the BS where the original
traffic arrives (red line), the video flow is mirrored (green line) on
the BS where the FE is placed.

the Figure 1). The IM, in contrast, can be deployed on any
BS, as the traffic representations produced by the FE render
the data transfer negligible in terms of bandwidth [5]. If these
components are deployed over the infrastructure, i.e., there are
enough resources to host them, the monitoring process will
have a negligible impact on the quality of videos received by
the users as we discuss in Section IV. Note that in this work we
do not account for the possibility of processing traffic features
on the network fabric itself (e.g., programmable switches),
leaving it for future work.

As we will demonstrate, separating raw traffic processing
from inference offers advantages in terms of i) flexibility in
resource utilization and ii) accuracy of the model estimates.
Note that this setup has no latency requirements for pipeline
operations, as the ISP’s goal is to monitor traffic flows to
assess their quality. Furthermore, in the following section,
we formulate an offline problem for the monitoring of video
streaming traffic. Indeed, the decision on the placement of
inference pipelines is based on i) the current traffic observed
at the time of decision, and ii) the historical data concerning
the resource usage of the pipeline components needed for mon-
itoring each flow. The online setting (i.e., with no assumption
or prior knowledge on the resource usage of video flows and
their FEs and IMs) with forecasting is left to future work.

B. Model

Infrastructure. We consider an infrastructure consisting of a
set of BSs. Each BS is associated with an edge server with a
fixed computational capacity as shown in [14]. BSs are divided
in clusters, and, within each cluster, each BS is connected to
a switch through a direct link. Each link connecting the BSs
has a given residual bandwidth capacity [15]. The topology of
each cluster is a star topology where the switch is the center
of the star, as shown in Figure 1. The raw video traffic arrives
at the switch and then it is routed to the desired BS. Hence, in

case of mirroring the original traffic of a given flow, we can
assume that the first point of mirroring is the switch and there
is a consumption of bandwidth between the switch and the BS
where the FE of the flow is placed. Indeed, to avoid bandwidth
consumption across the core network, we require that the FE
for each flow is deployed within the cluster of the BS where
the original video flow arrives. Given that there is only one
link between the switch and each BS within each cluster (in
a star topology), the bandwidth availability can be seen as a
property (or capacity) of each BS. This observation allows
us to model the network simply as a set of nodes N , i.e.,
the set of BSs (or nodes). Each node n ∈ N has a memory, a
processing and a bandwidth capacity: Cmem

n , Ccpu
n , Bn ∈ R+,

respectively. In what follows, we indicate with “capacity” the
residual availability of resources in a given node (in terms of
CPU, RAM or bandwidth).
Video Flows. Video flows (or streams) are sent by the service
provider, through the core network, to the BSs. The set of flows
is indicated with F . Each flow f ∈ F is characterized by its
throughput λf and by the original BS where the raw video
traffic arrives, denoted by sf (e.g, in Figure 1 the original BS
of the red flow is BS2). Further, we indicate with Cf ⊆ N
the cluster sf belongs to. As stated before, for each flow f , we
require the FE for f to be placed within Cf . In this manner,
if the FE for f is placed on a node n ∈ Cf different from
sf , the ISP must mirror the traffic from sf to n, leading to a
bandwidth consumption.
Inference Pipeline. The inference process, for each flow
f ∈ F , consists of two components to be placed on the
infrastructure. The first one is the FE which takes in input
the raw traffic and extracts all the features needed for the
inference. It is characterized by CPU and memory require-
ments, µcpu

f (which depends on λf) and µmem
f , respectively.

This component significantly reduces the traffic that is sent to
the IM. The second component is the IM that performs the
inference task on the data received by the FE. For each flow
f ∈ F , the inference can be executed by a model chosen
from a set Mf of possible models. Each model m ∈ Mf

is defined by the memory occupancy (or size) µmem
m , the

CPU requirements µcpu
m , and the level of accuracy αm at the

training phase. From the modelling perspective, two different
configurations of the same model for the inference of a flow
f can be considered as two distinct models in Mf . We
assume, for each inference model, that the level of accuracy
is an increasing function of the size since, in general, the
bigger is the size of the model and the higher is its accuracy.
Furthermore, we assume that the throughput between the FE
and IM of each pipeline is negligible since the raw traffic is
significantly reduced after being processed by the FE module.
Bronzino et al. [5] showed that the amount of traffic is reduced
by an order of magnitude of 104 for video inference, leading
to a negligible throughput on a network link with 10 Gbps
of bandwidth. In what follows we will say that a flow is
“monitored” if both the FE and the IM for that flow are
placed on the network. Given the model described above, the
Inference Placement Problem (IPP) is described in Figure 2.

Inference Placement Problem (IPP)

Input
(I1) Set of video flows F .
(I2) Set of ML models {Mf}f∈F for IMs.
(I3) Network N .
Output
(O1) Subset F ′ ⊆ F of video flows monitored through the
deployment of FE and IM modules.
(O2) One FE placed on a node in Cf , ∀f ∈ F ′.
(O3) One IM in {Mf}f∈F placed on a node inN , ∀f ∈ F ′.
Constraints
(C1) Computational capacity. The total resource occupation
of all the FEs and IMs placed on a node n ∈ N must not
exceed the capacity of n.
(C2) IM and FE. Each flow belongs to F ′ if and only if both
the FE and the IM are deployed on the infrastructure.
(C3) Bandwidth. The total amount of throughput of flows
mirrored to a BS must not exceed the bandwidth capacity of
the BS.
Optimization goal
(G) Maximize the total accuracy given by the sum of the
accuracies of the IMs instantiated for the flows in F ′.

Fig. 2: IPP Statement

C. Computational Complexity of IPP

Proposition 1. IPP is NP-hard.

Proof: The proof follows by reduction from the well-
known Multiple Knapsack Problem (MKP) [16]. Given an
instance of MKP with m knapsacks and n objects where each
item i has profit pi and weight wi, and each knapsack j has
capacity Cj , we can build an instance of IPP with |N | = m,
|F| = n and |Mi| = 1 for each i ∈ F . Further, we set
µcpu
i = 0, µmem

i = 0 for each i ∈ F , µmem
m = wi and

αm = pi for each m ∈ Mi, and λi = 0 for each i ∈ F . The
described mapping is the desired polynomial reduction.

III. PROPOSED APPROACH

A. Integer Linear Programming Formulation

The following integer linear programming (ILP) problem
formulates the problem described in Figure 2.
Variables. We define two kinds of binary variables. The first
one for the placement of the FE of each flow among the set of
nodes (or BSs); the second one represents the instantiation of
the IM of each flow on a given node (or BS) of the network.
1) FE placement. We define yf,n ∈ {0, 1}, ∀f ∈ F ,∀n ∈ N .
Such a variable is equal to 1 if the FE for f is placed on n.
Since we only deploy the FE of a given flow within its cluster,
we force yf,n to 0 whenever n /∈ Cf (as expressed later in
constraint (5)).
2) IM instantiation. The IM instantiation is represented by the
definition of xf,m,n ∈ {0, 1}, ∀f ∈ F ,∀m ∈ Mf ,∀n ∈ N .
The variable is set to 1 if model m is placed on n for flow f .
Constraints. The problem’s constraints are formally defined
as follows.

C1. Server capacity:∑
m∈Mf

µr
m

∑
f∈F

xf,m,n +
∑
f∈F

µr
fyf,n ≤ Cr

n,

∀n ∈ N ,∀r ∈ {cpu,mem}. (1)

C2. If the IM is instantiated for flow f ∈ F then also the FE
is deployed and vice versa:∑

n∈N
yf,n =

∑
m∈Mf

∑
n∈N

xf,m,n, ∀f ∈ F . (2)

At most one model is selected for each stream (flows can be
discarded): ∑

m∈Mf

∑
n∈N

xf,m,n ≤ 1, ∀f ∈ F . (3)

C3. Bandwidth constraints in case of mirroring video traffic
from the source of the flow to the BS where the feature
extractor for the flow is placed. The constraint only applies
for the flows whose source is not the considered BS:∑

f∈F|sf ̸=n

λfyf,n ≤ Bn, ∀n ∈ N . (4)

The FE of each flow f can only be placed within Cf . Such
a requirement is expressed by the following constraint:

yf,n ≤ 0, ∀f ∈ F ,∀n ∈ N \ Cf . (5)

Objective (G). The main metric that ISPs aim to maximize
is the total accuracy achieved by the models placed on the
infrastructure to monitor the traffic flows, i.e.,∑

f∈F

∑
n∈N

∑
m∈Mf

αmxf,m,n. (6)

B. Inference Rounding Algorithm (IRA)

Given the NP-hardness of IPP, the objective is to design an
efficient heuristic solution. Indeed, IPP shares similarities with
Multiple Multidimensional Knapsack problems [16]. Such
problems have been proved hard to approximate and heuristic
solutions have been provided [17]. In particular, our solution is
based on i) the relaxation of the ILP described in Section III-A,
and ii) the rounding of the fractional values obtained from
the relaxation. The reason behind such an algorithmic choice
is twofold. First, as it will be shown in Section IV, the
relaxation of the ILP represents a good starting point for the
design of a heuristic solution in terms of both accuracy and
computational complexity. Secondly, such a technique is one
of the most adopted to provide efficient heuristic algorithms
for NP-hard problems that present similarities with Multiple
Multidimensional Knapsack problems [16].
Main idea. As we will show in Section IV, if we solve the
relaxed version of IPP in practice we obtain a solution with
a low percentage of fractional variables. This means that,
by simply solving the linear program (LP) obtained by the
relaxation, we already have a valid heuristic solution that is
not far from the optimal one. Hence, the main idea of the
solution is to solve the LP using off-the-shelf solvers, and then

rounding the fractional values of the decision variables. After
solving the relaxation, all the non-zero resulting variables are
either set to 1 or to a fractional value in (0, 1). More formally,
we indicate with X̂ and Ŷ all the variables that are set to
a value different from zero by the resolution of the LP. In
particular, X̂ = X̂I ∪ X̂F and Ŷ = ŶI ∪ ŶF where X̂I (resp.
ŶI) is the set of all x’s (resp. y’s’) variables set to 1, and X̂F

(resp. ŶF) is the set of all x (resp. y) variables whose value lies
in (0, 1). With an abuse of notation we indicate with f ∈ X̂I

(resp. f ∈ X̂F) if there exist a node n and a model m such that
x̂f,m,n = 1 (resp. x̂f,m,n ∈ (0, 1)). The same notation applies
for ŶI and ŶF . The problem formulation of IPP implies that if
a flow f ∈ VF = X̂F ∪ ŶF then there are three possible cases
for the decision variables concerning f : case i) f ∈ X̂I and
f ∈ ŶF , i.e., the place of the IM for f has been fixed and the
FE’s placement is left; case ii) f ∈ X̂F and f ∈ ŶF , i.e., both
the placements of IM and FE are left; case iii) f ∈ X̂F and
f ∈ ŶI , i.e., the placement of FE is fixed and the placement
and the model for the inference should be determined.
Algorithmic solution. The Inference Rounding Algorithm
(IRA) follows the observations made above and it consists
of two parts: i) the resolution of the LP of the relaxed
version of IPP; ii) the rounding procedure based on the three
possible cases for the fractional decision variables. The relaxed
version of IPP is obtained by simply substituting the integrality
constraints defined above (FE Placement and IM instantiation)
with xf,m,n ∈ [0, 1] and yf,n ∈ [0, 1], respectively. The
pseudocode of IRA is shown in Algorithm 1.

Starting from the fractional solution of the linear program
(x̂, ŷ) (line 3 of Algorithm 1), the algorithm monitors each
flow f ∈ X̂I ∩ ŶI , i.e., all the flows for which both the FE
and the IM are entirely placed by the resolution of the LP,
are monitored by IRA. The set of such flows represents the
starting solution. Then, the algorithm analyses all the fractional
variables in VF trying to improve the total accuracy of the
starting solution by increasing the number of monitored flows.
According to case i), it first selects all the flows for which x̂
is set to 1 and ŷ has fractional values (line 6 in Algorithm 1).
The algorithm starts from this subset of variables since it is the
subset that can certainly increase the objective function. For
the fractional values of ŷ the algorithm attempts to deploy
entirely the FE on the location with the highest fractional
value on ŷ (line 10 in Algorithm 1). After this step, IRA
(line 11 in Algorithm 1) analyses the subset of flows for
which both x̂ and ŷ are fractional (second case). Finally, it
proceeds with the subset where x̂ is fractional and ŷ is set
to 1. For the model selection and placement, the algorithm
chooses the couple (model and node) with the highest value of
the fractional variable x̂ (line 15 and line 20 in Algorithm 1).
Indeed, the fractional values (of both x̂ and ŷ) are interpreted
as probabilities so that FEs and IMs are placed in the most
likely location and with the most likely model. The procedure
ALLOCATE simply checks for the availability of resources to
entirely place the IM or the FE for a given flow f . In case
of enough space for the component, it allocates the IM or the
FE on the established node, updates the residual resources and

the flow is monitored. Otherwise the flow is discarded.

Algorithm 1: Inference Rounding Algorithm (IRA)
1: Input: Set of video flows F , family of models {Mf}f∈F ,

network graph G = (N , E).
2: Output: Inference placement (x,y).
3: x̂, ŷ← solve LP of IPP
4: xf,m,n, yf,n ← x̂f,m,n, ŷf,n, ∀n ∈ N ,m ∈Mf

5: for f ∈ VF do
6: if f ∈ X̂I ∧ f ∈ ŶF then
7: E ← {n ∈ N|0 < ŷf,n < 1}
8: ñ← argmaxn∈E{ŷf,n}
9: m,n← m,n s.t. x̂f,m,n = 1

10: xf,m,n, yf,n, G← ALLOCATE(G, f, x̂, ŷ, ñ,m, n)
11: else if f ∈ X̂F ∧ f ∈ ŶF then
12: E ← {n ∈ N|0 < ŷf,n < 1}
13: ñ← argmaxn∈E{ŷf,n}
14: L← {(n,m) ∈ N ×Mf |0 < x̂f,m,n < 1}
15: n,m← argmax(n,m)∈L{x̂f,m,n}
16: xf,m,n, yf,n, G← ALLOCATE(G, f, x̂, ŷ, ñ,m, n)
17: else
18: ñ← n s.t. ŷf,n = 1
19: L← {(n,m) ∈ N ×Mf |0 < x̂f,m,n < 1}
20: n,m← argmax(n,m)∈L{x̂f,m,n}
21: xf,m,n, yf,n, G← ALLOCATE(G, f, x̂, ŷ, ñ,m, n)
22: end if
23: end for
24: return (x,y)

Time Complexity. The complexity of IRA is dominated
by the complexity to solve the LP relaxation of IPP, i.e.,
polynomial in the input size. Indeed, the algorithm performs
constant operations on the number of fractional variables and,
as we will show in Section IV, such a number represents a
small percentage of the total number of variables.

IV. EVALUATION

A. Experimental Settings

We evaluate the proposed solution using the NetMob dataset
described in [15], which contains mobile network traffic vol-
umes generated by various services. The experimental analysis
includes: i) a comparison of our solution with baselines,
including the state-of-the-art approach that treats the FE and
IM as a single component [10], [13], and ii) an assessment of
the optimality and efficiency of our rounding algorithm relative
to the integer optimal solution. Both this optimal solution and
the relaxed version of IPP are computed using Gurobi [18].
Data. The NetMob dataset contains traffic volumes generated
by 68 different mobile services (e.g., Netflix, Facebook Live)
over 20 metropolitan areas in France monitoring during 77
consecutive days in 2019 [15]. We focus our evaluation on
the area of Lyon and select Neflix traffic as a representative
scenario. The dataset only reports traffic volumes generated
from each tile of the metropolitan area, where a tile represents
an area of 100× 100 m2, without mentioning the position of
the BSs associated to each tile. Hence, we use the data from
the French National Agency of Frequencies [19] to retrieve the
coordinates of each BS of the area. Then we associate each
tile t to the BS b that minimizes Euclidean distance between

t and b. To obtain the total traffic of a given BS, we sum all
the traffic coming from each tile associated to that BS.
Network and topology. We have |N | = 418 BSs connected
according to the topology discussed in [12]. To create the star-
like subgraphs that connect the BSs we create ⌈ |N |

6 ⌉ clusters
of BSs using the k-means algorithm based on the Euclidean
distance between BSs. In each cluster, the bandwidth between
the central switch and each BS is uniformly generated from
the set {100, 400, 600, 1000, 5000, 10000} Mbps. We assume
that each BS is equipped with a server with computational
capabilities. The memory capacity of each BS is randomly
selected from the set {4000, 8000, 12000, 16000} MB, and the
CPU capacity is randomly sampled from {1, 2, 3} GHz.
Video flows. Given the total amount of traffic on each BS
we separate video flows f in the BS by randomly picking
a rate λf from {3, 5, 10, 15} Mbps that corresponds to the
average throughput at different video resolutions (480p, 720p,
1080p and 4K, respectively) [4]. To determine the total CPU
requirement (in terms of number of packets per second) for
each flow f we, first, randomly generate the CPU cycles τf
required to process 1 packet by the FE from the set [100, 400]
CPU cycles, in line with the values shown in Wan et al. [6]).
Then we get the number of packets to be processed by the FE
per second µcpu

f = ⌈ τf
ι ⌉, where ι represents the length of a

packet in bits. In the evaluation we set |Mf | = 10 models for
each flow f with accuracy and size (αm, µmem

f,m) uniformly
sampled from {(98, 2000), (90, 1500), (85, 1000), (80, 950)
, (70, 700), (65, 600), (60, 500), (40, 300), (30, 100), (20, 50)}
(%,MB). These values are in line with the accuracy values
and sizes presented in the literature [5], [10], [13].
Baselines. Given the lack of solutions in traffic monitoring that
can be used as a direct comparison, as it will be discussed in
Section V, we compare our solution against two baselines.
NoSplit (SotA). To highlight the advantages of splitting
the FE and the IM, we compare it against a solution that
constrains these two components to be located on the same
BS. This represents the common assumption from the state-
of-the-art to consider the FE and the IM as a unique compo-
nent deployed on the infrastructure [10], [13]. To implement
such a solution we simply modify the problem defined in
Section III-A by adding the following constraints:∑

m∈Mf

xf,m,n = yf,n, ∀n ∈ N ,∀f ∈ F . (7)

We solve the relaxation of the program and then we round
according to all the constraints.
FE_Origin. This represents an extreme solution where the
FE of each flow f is constrained to be placed on the original
BS sf of flow f . In this way, no bandwidth is consumed to
monitor each flow. The solution is obtained by adding the
following constraint to the formulation of IPP:

yf,n ≤ 0, ∀f ∈ F ,∀n ∈ N \ {sf}. (8)

Metrics. We compare all the solutions with respect to two
main metrics: i) the Average Accuracy per flow defined as

(a) % Monitored flows (b) Average Accuracy

Fig. 3: IRA vs. Baselines.

(
∑

f∈F
∑

n ∈ N
∑

m∈Mf
αm · xf,m,n)/|F|; ii) the Percent-

age of monitored flows by each solution with respect to the to-
tal number of flows |F|, defined as (

∑
f∈F

∑
n∈N yf,n)/|F|.

Note that the two metrics relate closely as unprocessed flows
account for 0% accuracy, as presented in Section II. In all the
figures of the experiments we report the average for the metric
of interest as computed over 30 different runs. In each run a
new set of flows is generated as described above.

B. Results

Comparison against SotA. We compare IRA against
NoSplit and FE_Origin in terms of the average accuracy
achieved by each solution in different time-slots of the day.
We also depict the Relaxed solution that represents solution
obtained by solving the relaxation of IPP and considering
solely the variables set to 1. For all the experiments we
consider the first 15 minutes of traffic of each hour (the time
series collected in the dataset, for each application, is divided
in 15-minute time steps [15]). Figure 3 reports the percentage
of monitored flows and the average accuracy (Figure 3a and
Figure 3b, respectively). First, we observe that the number of
monitored flows of Relaxed is already high and Relaxed
is a good starting point for a heuristic solution. This means
that the number of fractional variables obtained by relaxing
problem IPP is low compared to the total number of variables.
This confirms the goodness of IRA that starts from the solution
of Relaxed and rounds the remaining fractional variables.

In Figure 3b we notice the benefit of splitting the FE and
the IM for the monitoring of flows with IRA outperforming
NoSplit with a gap of ~30% of accuracy. Indeed, con-
straint (7) forces the IM and the FE to be deployed on the same
node consuming more resources on the node and hindering
the deployment of more accurate models. Furthermore, the
percentage of monitored flows reached by Relaxed and
NoSplit in Figure 3a suggests that is not always necessary
to monitor a greater number of flows to have higher accuracy.

The choice of deploying FEs in different places with respect
to the original BSs represents an issue in terms of consumed
bandwidth across the network. However, Figure 3 highlights
the limitation of deploying all the FEs in the original BSs.
This leads to a lower percentage of monitored flows (Fig-
ure 3a), thus lowering average accuracy (Figure 3b). Indeed,
constraint (8) of FE_Origin leads to saturate all the original
BSs with the FE components and hinders the deployment of
high-accuracy IMs. This behaviour is better highlighted in

(a) Traffic Volume (b) IRA (c) FE_Origin (d) NoSplit

(e) Traffic Volume (f) IRA (g) FE_Origin (h) NoSplit

(i) Traffic Volume (j) IRA (k) FE_Origin (l) NoSplit

Fig. 4: Traffic Volume vs. AVG Accuracy per BS

Figure 4 where we report, for each considered solution, the
heat maps of the average accuracy of the monitored flows for
each BS during different times of the day (9 am, 2 pm, 10
pm) and, hence, different traffic volumes. Considering peak
times of the day (i.e., 2 pm and 10 pm) we can observe how
FE_Origin fails in serving several traffic-intensive areas.
The requirement of placing FEs in the original BSs often
hinders the placement of IMs and, hence, the monitoring of
flows (blue holes in Figure 4g). The situation is better with
NoSplit (SotA) that is more flexible in the placement of
FEs within each cluster. In this way, the monitoring of flows is
not hampered, however, requiring the FE and the IM of each
flow to be placed in the same BS lows down the accuracy of
the IMs. We can notice it in Figure 4h and Figure 4l where
the distribution of accuracy is significantly more homogeneous
with respect to the scattered situation of FE_Origin. Finally,
higher and homogeneous accuracy is reached in IRA with the
maximum level of flexibility for the placement of FEs and
IMs, i.e., by allowing them to be placed in different BSs.
This behaviour is further exacerbated in the peak time of 10
pm where the traffic volume is higher. Constraint (7) limits
the average accuracy of No_Split although the number of
monitored flows is slightly higher than the number of flows
monitored by IRA (as shown in Figure 3b).
Takeaway. Decoupling the FE and IM in IRA increases flex-
ibility, leading to better resource utilization and more evenly
distributed accuracy in flow monitoring. Moreover, monitoring
more flows does not always result in higher accuracy.
Limiting the available bandwidth. The previous results
describe a case where the available bandwidth is not a bot-
tleneck to the inference placement problem, i.e., the entire
bandwidth of each link, generated as described above, is
entirely dedicated to the placement of inference pipelines.

However, such an availability of bandwidth might not be
always the most common case for two main reasons: i) the
estimation of the available bandwidth can be noisy leading
to errors in the residual bandwidth used as an upper bound
of constraint (4), and, hence, in the following placement of
the two components of each pipeline; ii) the existing traffic
of other services across the network should be taken into
account in the estimation of the residual available bandwidth.
To consider this aspect in the experiments, we simulate a
scenario where only 1% of the total bandwidth is available
for mirroring the Netflix traffic to place inference pipelines.
In this way, we consider a worst-case scenario equivalent to
having a 99% error in the bandwidth availability estimation.
This translates to considering 1% of Bn in constraint (4).
Furthermore, this case also captures the worst-case scenario
where just 1% of the total residual bandwidth is devoted to
video traffic mirroring in the placement of inference pipelines.
Finally, this ensures that bandwidth estimation errors do not
cause mirrored traffic to interfere with the original traffic, thus
preserving the video quality perceived by users.

Figure 5 presents the performance of the various solutions
under these bandwidth restrictions. Note that FE_Origin
is not included, as it does not involve any mirroring and,
therefore, does not contribute to additional bandwidth usage.
This is due to the constraint of placing the FEs on the
original BSs where the video flows originate. Figure 5a
illustrates the percentage of monitored flows that have been
mirrored by each solution for the purpose of placing inference
pipelines for monitoring. A mirrored flow is defined as a
flow that has been replicated on a different link within the
network for monitoring purposes. Both IRA and NoSplit
solution mirror a significant portion of the original video
traffic, although IRA performs less mirroring compared to the
traditional solution. This behaviour is a consequence of the
limited bandwidth resources available. Indeed, as shown in
Figure 5b, the bandwidth consumption (bandwidth overhead)
never exceeds 42% (achieved during the peak times, i.e., 2 pm
and 10 pm, respectively) of the available bandwidth. However,
this influences the percentage of monitored flows, as shown
in Figure 5c, and subsequently affects the average accuracy
achieved by each solution. Indeed, as depicted in Figure 5d,
every solution achieves a lower average accuracy compared to
what was attained in the scenario illustrated in Figure 3b. Note
that, although this limitation, the performance loss in terms of
accuracy, in the case of IRA, is only ~10% compared to the
case shown in Figure 3b.
Takeaway. The IRA solution is robust in worst-case scenarios
where just 1% of the total bandwidth is available for traffic
mirroring, with only ~10% loss in average accuracy compared
to the first case with complete availability of bandwidth, and
it still outperforms the state-of-the-art solution. Furthermore,
there is a trade-off between the accuracy and the percentage
of mirrored flows for the placement of inference pipelines.
However, this translates into less than 42% of the residual
available bandwidth occupation.
Optimality Evaluation. To study the trade-off between opti-

(a) % Mirrored flows (b) Bandwidth overhead

(c) % Monitored flows (d) Average Accuracy

Fig. 5: Comparison vs. Baselines with restricted bandwidth for
mirroring.

mality efficiency we compare IRA with respect the optimal
integer solution computed by the solver. To obtain such a
solution the solver has been stopped after 60 minutes of com-
putation and the best solution is considered. To show the trade-
off between the scalability and the optimality of the proposed
solution, the comparison exhibits the average execution time
and the average accuracy as the number of BSs increases
(increasing the number of flows as well). Figure 6 shows
such a comparison when the time-slot is set to 10 pm. The
dashed line in Figure 6b is the ceiling of the objective value
achieved by solving the relaxation of IPP, hence representing
a strict upper bound on the optimal value for IPP. From
Figure 6a we immediately observe that the optimal solution
results prohibitive for a practical utilization. The figure further
shows that the overhead brought by the rounding procedure
is negligible with respect to the time taken for solving the
relaxed problem. This highlights that the complexity of IRA
is dominated by the resolution of the linear program given by
the relaxation of IPP. Finally, Figure 6b shows the proximity
of IRA to the optimal solution and an improvement of ~17%
of accuracy with respect to Relaxed. Such an improvement
is due to the choice of variables to be rounded. Indeed,
in case of fractional variables for the placement of IMs,
IRA prioritizes the models and the nodes with the higher
fractional values, leading to a certain improvement in terms
of accuracy, in case of available resources. This result also
suggests further insights for dynamic scenarios. As illustrated
in Figure 6a, the proposed approach takes less than 200
seconds to compute a single placement of the monitoring
pipelines with the maximum number of BSs. This implies that
in a dynamic setting, the placement of monitoring pipelines
can be re-computed every 5 or 10 minutes.
Takeaway. These observations confirm that the rounding pro-
cedure is an effective solution for the inference placement
problem, both in terms of optimality and efficiency.

(a) Execution Time (b) Average Accuracy

Fig. 6: Comparison vs. Integer Optimal solution
V. RELATED WORK

Quality Inference of Video Streaming Traffic. Several
studies have proposed using inference models to extract video
quality metrics from encrypted traffic [4], [20]–[22]. These
studies emphasize the necessity of injecting raw traffic into
processing pipelines that consist of various components to
perform traffic analysis. However, their primary focus is on
the final step of these pipelines, specifically how to apply
different models with varying levels of accuracy to estimate
quality metrics of the traffic. In contrast, our work focuses on
the placement of inference models together with the FE com-
ponent to pre-process the incoming raw traffic. Our findings
indicate that the arrangement of these monitoring pipelines
over the network significantly impacts the average accuracy
achieved in the estimation of video quality metrics.
Model Serving. The closest research line to our work is
related to model-serving systems. In this context, a content
provider receives a set of inference requests that need to be
fulfilled. The main challenge is to place or schedule inference
models across a given infrastructure while optimizing specific
objectives, such as maximizing the total accuracy of the
served models. Several inference-providing systems have been
proposed in the literature, including Tensorflow Serving [23],
Azure ML [24], and Clipper [25] where inference requests are
served by a data center. Other studies have also explored in-
ference provisioning within geographically distributed infras-
tructures, such as edge computing. [9]–[11], [13]. However,
our work has significant differences from these approaches. In
traffic monitoring, the placement of inference is driven by the
necessity to monitor network flows to deduce video quality
metrics, whereas in inference-serving systems, the requests
are initiated by users. In the latter scenario, model placement
directly affects user service quality. In contrast, the quality of
the video streams each user receives in traffic monitoring is
not influenced by inference placement. Moreover, these works
consider just the deployment of ML models in the inference-
serving process. In traffic monitoring, it is essential to consider
the deployment of additional critical components, such as the
FE for the traffic preprocessing, as this is fundamental for
the effective functioning of the inference models. While the
deployment of multi-component pipelines has been considered
in video analytics [26], [27], and traffic analysis [28], the
optimization problems formulated in these studies focus the
placement and the variants of the inference models alone for
each pipeline. They do not account for decisions related to
other pipeline components. In our work, we take into account

both the FE placement and the IM deployment (together
with its variants) across a distributed edge infrastructure. In
the cloud computing context, the deployment of inference
pipelines has been considered in different works such as
InferLine [29], Pretzel [30], and Nexus [31]. However, these
works consider the deployment of inference pipelines on
centralized infrastructures, e.g., data centers or GPUs’ clusters.
Our work, on the other hand, tackles the deployment problem
over a distributed infrastructure such as a cellular network. The
lack of a direct solution operating in the same context of this
work justifies the choice of comparing IRA against baselines
inspired by the main algorithmic ideas of the state of the art.
Content Placement Problem. From the optimization perspec-
tive, the IPP is close to the content placement problem for
which a vast literature exists in different contexts of distributed
systems, such as hybrid clouds or service caching [32]–
[34]. However, there are two key differences between these
problems. First, in the serving caching problem, each content
can be placed or not, while in the IPP there is an additional
decision, i.e., which variant must be chosen for each deployed
model. Indeed, each model can have different variants to
perform the same inference task, and different variants have
different levels of accuracy and different resource demands.
Second, in the content placement problem, there are no con-
straints between the placement of two different contents, while
in our case the placement of the inference model should be
coordinated with the placement of the feature extractor for
each video flow. As shown in Section IV, such a coordination
improves the average accuracy obtained by ISPs.

VI. CONCLUSION AND DISCUSSION

In this paper, we introduced the inference placement prob-
lem in cellular networks for monitoring video traffic flows. We
first analyzed the computational complexity of the problem
and developed a heuristic solution, IRA, based on rounding
the solution of the relaxed formulation. Our evaluation on real
offline traces demonstrates that decoupling the FE and IM
yields higher accuracy in video flow monitoring compared
to standard methods. Interestingly, we found that monitor-
ing more flows does not always enhance average accuracy,
suggesting that sampling subsets of flows can achieve target
accuracy levels in predicting video quality metrics. Designing
optimal sampling strategies for these subsets remains an area
for future work. The solution presented here is an offline
approach for inference placement. However, as discussed
in [9], inference models can be dynamically updated to adapt
to traffic changes due to performance degradation over time.
Future work will focus on developing online strategies that can
predict traffic volume changes and perform adaptive inference
placement accordingly.

ACKNOWLEDGMENTS

This work was done using data made available by Orange
within the Netmob 2023 Challenge [15]. This work was
partially supported by the ANR Project No ANR-21-CE94-
0001-01 (MINT).

REFERENCES

[1] Sandvine, “Phenomena—THE GLOBAL INTERNET PHENOMENA
REPORT JANUARY 2023,” https://shorturl.at/7TZi2, 2023.

[2] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba, B. Mathieu,
S. Moteau, and S. Tuffin, “A look behind the curtain: traffic classifica-
tion in an increasingly encrypted web,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 5, no. 1, 2021.

[3] A. Saverimoutou, B. Mathieu, and S. Vaton, “Which secure transport
protocol for a reliable http/2-based web service: Tls or quic?” in IEEE
symposium on computers and communications (ISCC). IEEE, 2017.

[4] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and
N. Feamster, “Inferring streaming video quality from encrypted traffic:
Practical models and deployment experience,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 3, no. 3, 2019.

[5] F. Bronzino, P. Schmitt, S. Ayoubi, H. Kim, R. Teixeira, and N. Feamster,
“Traffic refinery: Cost-aware data representation for machine learning on
network traffic,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 5, no. 3, 2021.

[6] G. Wan, F. Gong, T. Barbette, and Z. Durumeric, “Retina: analyzing
100gbe traffic on commodity hardware,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022.

[7] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions in
automated traffic analysis,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021.

[8] R. Behravesh, D. Breitgand, D. H. Lorenz, and D. Raz, “A practical
near optimal deployment of service function chains in edge-to-cloud
networks,” arXiv preprint arXiv:2401.07611, 2024.

[9] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}:
Automated model-less inference serving,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021.

[10] T. S. Salem, G. Castellano, G. Neglia, F. Pianese, and A. Araldo,
“Toward inference delivery networks: Distributing machine learning with
optimality guarantees,” IEEE/ACM Transactions on Networking, 2023.

[11] T. da Silva Barros, F. Giroire, R. Aparicio-Pardo, S. Perennes, and
E. Natale, “Scheduling with fully compressible tasks: Application to
deep learning inference with neural network compression,” in The 24th
IEEE/ACM international Symposium on Cluster, Cloud and Internet
Computing (CCGRID 2024)), 2024.

[12] J. Martín-Pérez, L. Cominardi, C. J. Bernardos, and A. Mourad, “5gen:
A tool to generate 5g infrastructure graphs,” in IEEE Conference on
Standards for Communications and Networking (CSCN). IEEE, 2019.

[13] Y. Jin, L. Jiao, Z. Qian, S. Zhang, N. Chen, S. Lu, and X. Wang, “Pro-
visioning edge inference as a service via online learning,” in 2020 17th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). IEEE, 2020.

[14] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino, “Scal-
ability and performance evaluation of edge cloud systems for latency
constrained applications,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018.

[15] O. E. Martínez-Durive, S. Mishra, C. Ziemlicki, S. Rubrichi,
Z. Smoreda, and M. Fiore, “The netmob23 dataset: A high-resolution
multi-region service-level mobile data traffic cartography,” arXiv
preprint arXiv:2305.06933, 2023.

[16] H. Kellerer, U. Pferschy, D. Pisinger, H. Kellerer, U. Pferschy, and
D. Pisinger, Multidimensional knapsack problems. Springer, 2004.

[17] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack prob-
lems—an overview of recent advances. part ii: Multiple, multidimen-
sional, and quadratic knapsack problems,” Computers & Operations
Research, vol. 143, 2022.

[18] Gurobi Optimization, LLC. [Online]. Available: http://www.gurobi.com
[19] ANFR, “Agence National des Frequences,” https://data.anfr.fr/portail,

2025, [Online; accessed January-2025].
[20] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience

monitoring for https and quic,” in IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications. IEEE, 2018.

[21] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “Buffest:
Predicting buffer conditions and real-time requirements of http (s) adap-
tive streaming clients,” in Proceedings of the 8th ACM on Multimedia
Systems Conference, 2017.

[22] C. Gutterman, K. Guo, S. Arora, T. Gilliland, X. Wang, L. Wu, E. Katz-
Bassett, and G. Zussman, “Requet: Real-time qoe metric detection for
encrypted youtube traffic,” ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMM), vol. 16, no. 2s, 2020.

[23] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

[24] D. Chappell, “Introducing azure machine learning,” A guide for technical
professionals, sponsored by microsoft corporation, 2015.

[25] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A {Low-Latency} online prediction serving
system,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017.

[26] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018.

[27] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
{Delay-Tolerance},” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), 2017.

[28] G. Wan, S. Liu, F. Bronzino, N. Feamster, and Z. Durumeric, “Cato:
End-to-end optimization of ml-based traffic analysis pipelines,” arXiv
preprint arXiv:2402.06099, 2024.

[29] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov, “Inferline: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020.

[30] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer,
and M. Interlandi, “{PRETZEL}: Opening the black box of machine
learning prediction serving systems,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018.

[31] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019.

[32] X. Qiu, H. Li, C. Wu, Z. Li, and F. C. Lau, “Cost-minimizing dynamic
migration of content distribution services into hybrid clouds,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 12, 2014.

[33] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018.

[34] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, 2016.

