
Network Service Abstractions for a Mobility-Centric Future
Internet Architecture∗

Francesco Bronzino, Kiran Nagaraja, Ivan Seskar, Dipankar Raychaudhuri
WINLAB, Rutgers University

671 US1 South, North Brunswick, NJ 08902
{bronzino, nkiran, seskar, ray}@winlab.rutgers.edu

ABSTRACT
Mobile devices are growingly dominating the Internet, and
traditional host-centric notions to communication need to
be redesigned for the next-generation architecture. To sup-
port this major shift, we propose in this paper a set of basic
service abstractions that should be afforded by a future In-
ternet that is centered upon the notion of self-certifying glob-
ally unique IDs (GUID) for all network principals - hosts,
content, services, etc. alike. We followup with a specific
set of network service APIs that provide full access to the
proposed abstractions, and implement these on Linux and
Android hosts that connect to an instantiation of the novel
future network - MobilityFirst. Through a small number of
representative use cases we show that the API is flexible
and can enable efficient, robust, and trustworthy versions of
present and future applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Internet; mobility; trust; network services; application pro-
gramming interface; Future Internet Architecture

1. INTRODUCTION
The Internet today is very different from its original con-

cept when the architecture and protocols were developed
around the abstraction of communications between fixed
end hosts. Growing levels of mobility characterize today’s
communications; mobile wireless devices have outnumbered
fixed end hosts and even service end-point have different
levels of mobility (not an uncommon scenario in data cen-
ters). Support for seamless mobility is a growing challenge

∗Research supported by NSF Future Internet Architecture
(FIA) grant CNS-1040735

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiArch’13, October 4, 2013, Miami, Florida, USA
Copyright 2013 ACM 978-1-4503-2366-6/13/10
http://dx.doi.org/10.1145/2505906.2505908 ...$15.00.

and past and current proposals tried to address the problem
but they are either only applicable within limited environ-
ments (e.g., cellular [21]) or are inefficient when applied to
the Internet (e.g., MobileIP [2]). A few recent scalable ap-
proaches to support mobility have been proposed, but these
are not standalone and require changes to the routing plane
and/or protocol stack defined in TCP/IP [20, 16, 1, 3]. A
few solutions may be applied by patching current systems,
but benefits under fine-grained mobility are still unclear [18,
13].

In the second place, in contrast to the host-centric per-
spective previously introduced, principals such as contents
and services have become over the years at least as much im-
portant. However, since they are not first-class network ob-
jects, they are not directly addressable. Direct addressabil-
ity being location-independent would enable seamless con-
tent/service mobility, and help with building efficient deliv-
ery networks without resorting to DNS-based tricks used by
present-day CDNs.

Along the same line, the clear boundaries of network pipes
and compute end-points that were at the base of the TCP/IP
communications are starting to fade; CDNs and hosting
platforms are starting to place storage and compute clouds
closer to consumers [17] and this strategy is increasingly be-
ing co-opted by ISPs [6] eager to provide value-add services.

Moreover, emerging context (e.g., locality aware messag-
ing) and collaborative applications have increased the need
and importance of supporting efficient one-to-many commu-
nication mechanisms. The related aspect of device-level mul-
tihoming where devices may simultaneously attach to two or
more networks for performance or robust connectivity will
also benefit from native support for multi-point addressing
[1].

Finally, along with the exponential growth in size and
economic importance of the Internet, the scale of security
threats has grown too. Establishing network trustworthi-
ness and avoiding spoofing and identity hijacking incidents
are priorities today that are not completely met by patched
solutions such as IPSEC or DNSSEC, mostly due to their
partial deployment or adoption. A clean approach that en-
sures uniform deployment at a basic level for all network
principals such as the PKI-based self-certified identifier pro-
posal is a potential solution [7].

In MobilityFirst [5], starting from a clean slate approach
to the design of the future Internet architecture, we address
the above stated challenges and trends collectively. In this
context, we present in this paper a set of basic service ab-
stractions afforded by MobilityFirst. Section 2 first intro-

duces this set of abstractions that needs to be supported by
the future Internet to effectively address different challenges
and satisfy application requirements. These abstractions in-
clude name-based services, direct addressability for content
and services, trusted identities, multi-point addressability
and in-network hosting of storage and compute services.
Afterwords, in Section 3 we present the key components
of the MobilityFirst architecture, which are followed up in
Section 4 by a specific realization of a network service API
aimed at capturing the proposed abstractions. Sections 5
and 6 present evaluation results and use cases that demon-
strate the flexible capabilities of the API and architecture.
Section 7 concludes the paper.

2. NETWORK SERVICE ABSTRACTIONS
We think that a future Internet should support the below

set of service abstractions. The implication of each on the
network architecture (NetArch) design is presented along-
side.

A. Name-based Services. Communication with a mo-
bile end-point should be no different than that with a fixed
end-point. The current ’practical’ approach results in un-
desirable asymmetry, where mobile end-points are always
responsible for re-establishing connections. The situation is
doubly vexing when both end-points are mobile. A basic
service abstraction that allows addressing a network end-
point by its unique name and not its current location will
establish a uniform approach to dealing with fixed and mo-
bile end-points alike, enabling seamless mobility.
NetArch implications: To support a name-based net-
work service that seamlessly handles mobility, the network
requires native support for dynamic and fine-grain location
resolution. Some have proposed protocol interposition ap-
proaches that dynamically substitute local addresses for end-
points with dynamically resolved ones [16, 1]. Efficiency
extensions in MobileIPv6 attempt to signal end-points with
address updates [4] to avoid triangular routing through fixed
home agents. However, we think that besides end-hosts, the
network routing fabric must also be able to dynamically re-
solve and re-bind in-flight packets.

B. Direct Addressability for All Network Principals.
Host-centric abstractions to network services were a solid
building block during the conception and early advancement
of the Internet. Though, other important principals have
emerged since then. While content and services are two es-
tablished principals (besides hosts), others such as sensors
and actuators, as also more abstract ones such as context
are quickly gaining traction as first class principals. Since
few foresaw today’s usage of the Internet with any accu-
racy, allowing for a broader definition should be the path
forward. In that vein, direct addressability for all principals
eliminates any unnecessary bindings of one principal with
another. For instance, content should be addressable both
directly and independently of where it may be located phys-
ically.
NetArch implications: Allowing for direct addressability
for not only content and services, but also other emerging
first class entities requires that the name space be practically
inexhaustible. For instance, 256 bits to encode the name
would last us for a long time to come. To put it in per-
spective, 2270 is the ballpark for number of atoms in the

observable universe. Meanwhile, IPv6 has settled on a more
’immediately’ practical level of 128 bits to capture all ad-
dresses assignable to end-hosts. A larger namespace implies
engineering challenges to implementing network elements -
whenever forwarding engines inspect, lookup or classify on
names - and scalability of network support services such as
a name-to-address resolution service.

C. Trusted Identities. Stronger security and network
trust is possible if self-certifying names were used for ad-
dressing principals, as shown in AIP [7]. Present-day ap-
proaches to authenticate and establishing trust is based on
principals that maintain trust credentials (e.g., a PKI certifi-
cate) separate from their network identity (an IP address),
and where the credential establishes the linkage of princi-
pal’s identity to the network identifier. The linkage itself
is certified by a mutually trusted entity (e.g., a certificate
authority). The adoption today is far from pervasive and
particularly challenging for mobile entities where the con-
flated network identifier may change. Using a public-key as
the self-certifying identifier to address principals, can ensure
both location independence and greater trust by preventing
hijacking and spoofing problems seen with IP addresses to-
day.
NetArch implications: Embedding trust within the net-
work names requires names to be longer and also to be flat.
When using a PKI public key of a reasonable strength X,
would require a minimum of 2X bits (= 256 bits for the cur-
rent recommended 128-bit strength) as when using Elliptic
Curve Cryptography. Also, since names form the basis of
all network services, there must exist organizations or other
easily accessible mechanisms by which names are produced
and assigned to network principals in a reasonable manner.
Finally, flat names imply they cannot be aggregated as is
for IP addresses, creating engineering challenges when rout-
ing/forwarding operations need be performed on names.

D. Multi-Point Addressability. With group-based sub-
scriptions (e.g., RSS, over-the-top video ’broadcasts’) and
collaborative applications (e.g., teleconferencing, gaming)
routine today, need for multi-point addressing is basic. Un-
der this are multicast, multihoming, and also anycast, a
’one-of-many’ abstraction important for a variety of reliabil-
ity and load-sharing uses. Today’s host-centric Internet es-
sentially supports a point-to-point abstraction. IP-multicast
is really an extension that’s enabled by special interpretation
of a small subset of destination addresses. Concerns of scal-
ability means that multicast is commonly left disabled on
network elements. Internet applications therefore regularly
resort to multiple unicasts to address groups. In wireless
environments, there is a desire to take advantage of inher-
ent multicast/broadcast medium to enable efficient point to
multi-point delivery services. Multi-homing, where entities
have two or more active network attachments (e.g., a smart-
phone with both 4G LTE and WiFi radios), deserves similar
support with a few independent considerations that allow
flexibility on how each attachment can be used separately
or collectively for performance, reliability or other metrics.
NetArch implications: First, the network must have sup-
port for creating and managing groups of member identi-
ties. These must be dynamically available to the routing
fabric dynamically. Be it as receiver driven multicast trees
or some other means, a basic consideration would be limit
per group state within network elements to minimize set-up

Figure 1: MobilityFirst architecture.

procedures for easier and sustained adoption. Since names
are flat and uniform, the service abstraction must provide a
means for end-hosts to specify the requested delivery service
- multicast, anycast, multihoming, broadcast, etc. - that’s
interpreted by the network elements. While network could
participate in path choice and scheduling for multihoming,
transport implementions may also be conceived at the end-
host [19].

E. En-Route Storage and Compute. The traditional
notion of keeping all data processing at end-points with the
network as pipes with routing alone is beginning to dissolve.
For instance, non-ISPs such as Akamai have independently
placed compute/storage resources at the edges of the net-
work to reduce access latency. It is not inconceivable, there-
fore, for ISPs to open up PoPs for placement of storage
and compute services as well [6]. Routers in the request
path may service content requests, or co-located compute
resources may shoulder mobile offloaded security functions
such as data encryption. In-network, and en-route compute
opportunity may hold particular appeal for mobile devices
that are often on a limited resource budget [12] and may
require non-trivial customization of data delivered to them.
NetArch implications: While certain services may be em-
bedded transparently into the network [9] or be co-located
without requiring a tight coupling with the routing fabric,
network architectures with a extensible data plane in the
form of a pluggable computer plane, would benefit from flex-
ible service extensibility in the future.

3. BACKGROUND: MOBILITYFIRST NET-
WORK ARCHITECTURE

With the above stated network service abstractions in con-
sideration, we have designed and prototyped a network ar-
chitecture that addresses the principal goals of supporting
at-scale and seamless mobility, along with trustworthiness in
the future Internet. Figure 1 shows the main components of
the MobilityFirst architecture which centers around the con-
cept of self-certifying, Globally Unique IDentifiers (GUIDs)
as names for all network principals. Below we present key
details of the architecture that address the requirements out-
lined in the previous section.

Naming and Dynamic Resolution. At the crux of the
MobilityFirst architecture is a new name-based service layer
which serves as the ’narrow waist’ of the protocol stack. The

name-based service layer uses flat GUIDs for all principals
or network-attached objects including hosts, content, and
services, making each a first-class network object. Unlike
IP addresses which conflate identity and location, addresses
of objects in MobilityFirst are dynamically resolved using
the object’s GUID. This resolution is enabled by a globally
accessible name resolution service (GNRS), which is used by
objects to both announce their latest location/address and
lookup end points they wish to communicate with. While
a variety of incarnations of the GNRS are possible, we have
validated 2 alternate designs that both meet our low resolu-
tion latency goals of less than 100ms on average for lookup
operations [23, 22].

Trusted Communication. A GUID assigned to a network
object by one of several name certification services (NCS),
is self-certifiable, i.e., end-points claiming a GUID can au-
thenticate each other without the need for third-party certi-
fication. When the GUID is derived as a cryptographic hash
of the object’s public key, the authentication requires a sim-
ple, bilateral challenge response procedure to be executed
between the communicating end-points. For content, the
GUID may optionally be derived as a cryptographic hash
of the bits of the content. For full non-repudiation, i.e., to
verify origin of content, a signature may accompany the con-
tent which could authenticate the principal that originated
the content.

Storage-Informed Segmented Transport, Edge-Aware
Routing. In contrast to end-to-end transports which per-
form poorly in wireless conditions [10, 8], MobilityFirst em-
ploys a segmented transport to reliably progress data hop-
by-hop. Data is segmented into large blocks that are cached
at each hop, if storage is available, to enable in-network
retransmission under losses. Experiments under a variety
of wireless conditions have shown significantly better fair-
ness, throughput, latency and robustness under the hop-
by-hop transport, including an order of magnitude gains in
median throughput [14, 11]. Within a domain, a gener-
alized storage-aware routing (GSTAR) combines link-state
routing with DTN elements, and flexibly expands connec-
tivity across wired and wireless segments, as also occasion-
ally connected partitions [15]. Conditions at the wireless-
edge are further heeded by adopting an edge-aware inter-
domain routing (EIR) approach that scalably gathers (using
telescoping or aggregation of updates) and utilizes capacity
and load conditions at edge networks to instrument effective
multi-path and multi-home delivery.

Extensible In-Network Services. MobilityFirst proposes
a network fabric with native support for multi-point and
multi-path delivery services, with little to no set up con-
trol signaling between network elements and minimal state
within them. For example, group memberships for multi-
point delivery are maintained within the GNRS and re-
trieved dynamically by source hosts or en-route network el-
ements to determine forwarding paths. The requested de-
livery type is specified by end-hosts and encoded as the ser-
vice identifier (SID) field within the routing header, and
includes multicast, anycast, multi-path, and multi-home de-
livery. To support future extensibility of network function,
MobilityFirst proposes a pluggable ’compute plane’ for the
network fabric. Compute services traditionally implemented
by end-hosts may be plugged into the network at strategic
points to provide en-route or local services such as content

Table 1: MobilityFirst API
Basic Content Centric Service Centric

open(profile, [profile-opts], [src-GUID]) get(dst-GUID, request, buffer, [svc-opts]) exec(dst-GUID, request, buffer, [svc-opts])

send(dst-GUID, data, [svc-opts]) get handle(handle, dst-GUID, request) exec handle(handle, dst-GUID, request)

recv(src-GUID, buffer, [GUID-set]) get response(handle, data, [svc-opts]) exec response(handle, data, [svc-opts])

attach(GUID-set) post(dst-GUID, data, buffer, [svc-opts])

detach(GUID-set) post handle(handle, dst-GUID, data)

close() send response(handle, response, [svc-opts])

caching, encryption, VPN, or video transcoding. These in-
stances register their name-address mappings at the GNRS,
and require that end-hosts request their invocation by spec-
ifying a compute-plane SID and the GUID of the particular
service. Furthermore, multiple SIDs may be specified simul-
taneously within the header invoking any sensible combina-
tion of services on a packet.

4. MOBILITYFIRST API
In this section we discuss the specific API we are develop-

ing with the goal of supporting the abstractions presented in
Section 2. Table 1 shows the complete set of API designed to
take advantage of the architecture. The parameters therein
are a loose depiction mainly to simplify the presentation.
We have divided the operations into three major groups:
basic, content-centric and service-centric operations. By do-
ing so we want to be able to take advantage of the inherent
characteristics of the communication patterns of these three
groups of abstractions.

4.1 Basic Operations
Basic operations are in charge of: create end points with

default stack operations customized for applications, sup-
port name based message delivery and manage network pres-
ence for the set of application GUIDs.

Endpoint/Socket creation and customization. At the
beginning of each communication session, an application ini-
tializes a MobilityFirst socket by invoking the open opera-
tion. During this initialization, the application provides the
API layer the informations about the profile of the commu-
nication that will occur. With the word profile we identifies
the set of elements that characterize the session such as:
communication patterns, resources needed and services re-
quired. Additional extensions to the profile can be provided
through a set of optional profile options. The final parameter
is also optional and represents the GUID that the applica-
tion want to use as its default interface to the network.

Name-based Messaging. Once the session is initialized
send and recv are used for the exchange of data messages.
While the baseline profile is common for the entire session,
a per-message characterization is possible through the use
of service options. These service options are used to address
the set of network services offered by the architecture. This
set of features spans from the ability of exploiting the com-
puting layer located at routers, to different delivery systems
and security options. Additionally, GUIDs can be used to
express intentional data receipt through the use of the op-
tional GUID-set parameter in the recv operation.

Management of network presence. To modify the set
of GUIDs that an application wants to be responsible for
attach and detach operations can be used. Through these

operations network reachability for specified GUIDs can be
announced if not already established. The utility of these
operations can be easily identified in a content context where
available contents are in continuous change and their avail-
ability needs to be updated both locally and remotely on
the GNRS.

4.2 Content and Service Extensions to the API
As introduced before, GUIDs can represent any network

element. While we do not analyze in this paper how hu-
man readable names would get translated into GUIDs, we
assume that from this transaction the semantical relation-
ship between the nature of the GUID and the network object
that it identifies is easily tracked by the programmer.
Starting from this principle that additional information about
the nature of the GUID could be known a-priori, we ex-
tended the API to support the following three specific op-
erations as related to content and service entities: requests
for transferring contents from a remote location (i.e. get),
transfer of content to a remote location (i.e. post) and re-
quests for a service to be executed on a remote location (i.e.
exec). The use of type specific operations translates in dif-
ferent advantages; on the host side this enables the network
stack to select the best transport protocol and allocate in ad-
vance the adequate amount of resources; moreover it allows
the user to choose between handling content transactions
asynchronously or as atomic operations and use per oper-
ation security and network services. On the network side
this enables the usage of specific header SIDs to provide the
network components additional information about the type
of data flowing.

All three communication patterns are characterized by
a three way transaction represented as: request (i.e. get,
post, exec), analysis of the request by the receiving host(i.e.
X handle) and final response (i.e. X response). Handle ob-
jects are used to identify specific requests and characterize
the responses that follow them. Additional informations for
the end points involved in the communication can be passed
through the use of the request and response parameters.

5. IMPLEMENTATION
To gain some experience with our design, we are devel-

oping a proof-of-concept prototype of MobilityFirst’s API
and end host protocol stack. The API is implemented as a
system library and can be interfaced both from C/C++ and
from JAVA; the stack implementation takes the form of a
standalone, multi-threaded user-level process; for low-level
packet capture and injection of GUID-based MobilityFirst
packets the stack exploits the pcap library. As all compo-
nents are developed in C/C++ or JAVA with no major li-
brary dependencies they can be easily utilized on x86/ARM
platforms running Linux or Android.
Thanks to this prototype and jointly to the network compo-

Table 2: Latency in ms on 54Mbps WiFi link
MobilityFirst IP

64B 5.62 ± 3.69 0.55 ± 0.42

256B 4.71 ± 0.75 0.65 ± 0.80

1KB 5.68 ± 0.88 0.81 ± 0.35

4KB 8.93 ± 3.75 3.31 ± 1.00

16KB 20.44 ± 1.78 12.72 ± 1.14

10
0

10
2

10
46

8

10

12

14

16

18

Chunk size (KB)

T
hr

ou
gh

pu
t (

M
bp

s)

Figure 2: Throughput on a 54Mbps WiFi link

nents that are also under development, new services difficult
to realize with TCP/IP will be tested and analyzed.

5.1 Micro-benchmarks
To ensure a reasonable implementation of the API and

the protocol stack, we ran basic latency and throughput ex-
periments to establish the combined API library and stack
performance.
In Table 2 and Figure 2 are shown respectively the round trip
times and maximum throughput achieved by two machines
with Intel i7 K875 processors and 8GB of memory directly
connected through a Intel 54 Mbps Wi-Fi interface. From
the table is possible to notice that even though the software
implementation generates additional computing overhead,
the behavior of the average RTTs with increasing packet
size follows the one obtained using ICMP control messages.
The graph provides an idea of the difference of performances
achieved by transferring a large file dividing it in chunks of
different sizes. While the performance is not yet comparable
to what we get from using iperf with UDP (21 Mbps on av-
erage) and TCP (17.1 Mbps on average), the behavior of the
graph is consistent with what would be expected from the
application of the wireless transport protocol Hop [14] where
with additional protocol overhead better performances are
achieved with big chunk sizes. Additional optimizations will
be implemented to close the gap with TCP/IP.

6. USE CASES
We now show several examples of how the defined API

would support: common Internet applications, difficult us-
age scenarios and MobilityFirst specific scenarios.

Content Retrieval. Among the services that would in-
herently benefit from name based routing there is content
retrieval. The GUID abstraction nicely fits the needs of
this context by allowing two different retrieval methods: by
referencing contents with specific GUIDs or by contacting
web servers through their GUIDs. Moreover delivery op-
tions could be exploited to achieve retrieval flexibility and
to exploit in-network services.
As a supportive example of the second case we have imple-
mented a small content retrieval scenario where two content
servers are located at different distances, in terms of hops

Table 3: Latency in ms to content severs
WIFI ETH 10 ETH 100

Server 1 23.03 ± 10.52 14.74 ± 1.17 13.15 ± 1.02

Server 2 30.23 ± 8.66 17.58 ± 0.75 15.16 ± 0.81

count, from a client. Figure 3 (left) shows the structure of
the network. The core network is based on Ethernet links at
100Mbps or 10Mbps, while we change link L1 from either
a 54 Mbps Wi-Fi link, a 10 Mbps Ethernet link or a 100
Mbps Ethernet link. Table 3 shows that the latencies in the
three cases do not differ much between the two servers. In
this scenario, the end user sequentially requests 20 contents
of size 24 MB replicated on both servers sending a request
message addressed to a GUID representing the web service
and try to retrieve them using anycast delivery, as reflected
in the following listing:
int downloadFile (char ∗myGUID, char ∗sGUID){

//b i s reques t message
// opts i s ”a”
. . .
hdl = open (sGUID , myGUID, NULL) ;
r e t = send (handle , b , 32 , &opts) ;
while (remSize) {

r e t = recv (hdl , b , MAX−CH,NULL) ;
addToContent (b , remSize , r e t) ;
remSize −= re t ;

}
. . .

}

After the 10th transfer is completed a failure occurs on
the link connecting to S2. From the retrieval time analy-
sis shown in Figure 3 is possible to notice how the routing
paradigms embedded in the GUID abstraction enable the
handling of the link failure. In this case the 11th request
is delayed due to the adjusting period of the network. The
effect of the failure would be additionally reduced in case
of retrieval of larger contents. Figure 3 (center) shows the
throughput change after the failure occurs.
This same example could be also represented exploiting the
other approach where GUIDs are used to reference contents;
in this case contents would be retrieved through get requests
providing inherent support to content location services that
nowadays are achieved through DNS tricks that would not
be desirable otherwise [17].

Multihoming receive. While the concept of multihom-
ing is inherently supported in name based routing systems,
how to handle multiple interfaces from a network interface
point of view is still an open issue as multiple options are
available. We argue that there should be a two level pol-
icy to determine the usage of the available interfaces: one
based on application specific needs and one defined by the
user, with the latter having higher priority. In the proposed
API, the user level policy could be then expressed during the
context creation provided by the open operation while the
application requirements would be inherently defined from
the context defined. These policies would be then applied
to provide additional information to other network elements
by the usage of header SIDs or entries in the GNRS. These
concepts could be applied to the sample network of Figure
3. While we have analyzed the network behavior in case of
failure, the use of multiple interfaces to the network could
be exploited to increase performances by exploiting content
presence on both servers.

In-network services usage. Extensible In-Network Ser-
vices are a key components of MobilityFirst’s architecture

0 5 10 15 20
0

20

40

60

80

100

Request Index

T
hr

ou
gh

pu
t (

M
bp

s)

WIFI
ETH 10
ETH 100

0 5 10 15 20
0

10

20

30

40

50

60

Request Index

D
ow

nl
oa

d
T

im
e

(s
)

WIFI
ETH 10
ETH 100

Figure 3: Anycast content retrieval experiment

that enables en-route or local services such as content caching,
encryption, VPN, or video transcoding. While we do not
plan to provide full access to network services at the appli-
cation level, we think that a set of content and service spe-
cific features should be addressable through the API. With
the proposed API, these services could be activated on a per
message base, allowing enough flexibility to the developer.
As an example, we could consider the on route caching of
contents. With the proposed API this could be achieved by
applying a message specific option.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented the main network service ab-

stractions that MobilityFirst, as a potential Future Internet
Architecture, plans to support. For each of them we have
discussed how they have affected the design choices we are
taking in the definition of the architecture. Moreover we pre-
sented the design of the API we are developing along with
other network components that will be used to evaluate the
proposed concepts. These interfaces try to provide complete
support to the presented abstractions using a base group of
operations in conjunction with content and service specific
extensions. Finally we showed through a series of use cases
how this API could be exploited to offer the set of features
that MobilityFirst aims to provide.
Thanks to the prototype that is under development, we plan
to further explore in future works how MobilityFirst would
perform in scenarios that are difficult to realize in today’s
Internet architecture.

8. ACKNOWLEDGMENTS
The authors would like to thank Chunhui Zhang and Guan-

ling Chen of University of Massachusetts Lowell for the con-
tribution given with the implementation of the client stack
prototype.

9. REFERENCES
[1] Host identity protocol.

http://tools.ietf.org/html/rfc5201.

[2] Ip mobility support for ipv4.
http://tools.ietf.org/html/rfc3344.

[3] The locator/id separation protocol (lisp).
http://tools.ietf.org/html/rfc6830.

[4] Mobility support in ipv6.
http://www.ietf.org/rfc/rfc3775.txt.

[5] MobilityFirst.
http://mobilityfirst.winlab.rutgers.edu/.

[6] A. V. Abhigyan Sharma and R. Sitaraman. Distributing
content simplifies isp traffic engineering. In Proc. of ACM
SIGMETRICS, 2013.

[7] D. G. Andersen et al. Accountable Internet Protocol
(AIP). In Proc. ACM SIGCOMM, August 2008.

[8] M. C. Chan and R. Ramjee. Tcp/ip performance over 3g
wireless links with rate and delay variation. Wireless
Networks, pages 81–97, 2005.

[9] J. Erman et al. Network-aware forward caching. In
Proceedings of the 18th international conference on World
wide web, pages 291–300. ACM, 2009.

[10] S. Farrell et al. When tcp breaks: Delay- and disruption-
tolerant networking. IEEE Internet Computing,
10(4):72–78, 2006.

[11] S. Gopinath, S. Jain, S. Makharia, and D. Raychaudhuri.
An experimental study of the cache-and-forward network
architecture in multi-hop wireless scenarios. In Proc. of
LANMAN, 2010.

[12] M. S. Gordon et al. Comet: Code offload by migrating
execution transparently. In Proceedings of the 10th
USENIX conference on Operating Systems Design and
Implementation, pages 93–106. USENIX Association, 2012.

[13] B. Y. Kimura and H. C. Guardia. Tips: wrapping the
sockets api for seamless ip mobility. In Proc. of Applied
computing. ACM, 2008.

[14] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani.
Block-switched networks: a new paradigm for wireless
transport. In Proc. of NSDI, 2009.

[15] S. C. Nelson, G. Bhanage, and D. Raychaudhuri. GSTAR:
generalized storage-aware routing for mobilityfirst in the
future mobile internet. In Proc. of MobiArch, pages 19–24.
ACM, 2011.

[16] E. Nordstrom et al. Serval: An end-host stack for
service-centric networking. Proc. 9th USENIX NSDI, 2012.

[17] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai
network: a platform for high-performance internet
applications. ACM SIGOPS Operating Systems Review,
44(3):2–19, 2010.

[18] A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In Proceedings of the 6th annual
international conference on Mobile computing and
networking, pages 155–166. ACM, 2000.

[19] R. Stewart and C. Metz. Sctp: new transport protocol for
tcp/ip. Internet Computing, IEEE, 5(6):64–69, 2001.

[20] J. Su et al. Haggle: Seamless networking for mobile
applications. In UbiComp 2007: Ubiquitous Computing,
pages 391–408. Springer, 2007.

[21] A. G. Valkó. Cellular ip: a new approach to internet host
mobility. ACM SIGCOMM Computer Communication
Review, 29(1):50–65, 1999.

[22] A. Venkataramani et al. Design requirements of a global
name service for a mobility-centric, trustworthy
internetwork. In Communication Systems and Networks
and Workshops, 2013. COMSNETS 2013. IEEE, 2013.

[23] T. Vu et al. Dmap: a shared hosting scheme for dynamic
identifier to locator mappings in the global internet. In
Distributed Computing Systems (ICDCS), 2012, pages
698–707. IEEE, 2012.

