
CATO: End-to-End Optimization of ML-Based
Traffic Analysis Pipelines

Gerry Wan1 Shinan Liu2 Francesco Bronzino3 Nick Feamster2 Zakir Durumeric1

1Stanford University 2University of Chicago 3ENS Lyon

Abstract
Machine learning has shown tremendous potential for improv-
ing the capabilities of network traffic analysis applications,
often outperforming simpler rule-based heuristics. However,
ML-based solutions remain difficult to deploy in practice.
Many existing approaches only optimize the predictive perfor-
mance of their models, overlooking the practical challenges
of running them against network traffic in real time. This is
especially problematic in the domain of traffic analysis, where
the efficiency of the serving pipeline is a critical factor in de-
termining the usability of a model. In this work, we introduce
CATO, a framework that addresses this problem by jointly
optimizing the predictive performance and the associated sys-
tems costs of the serving pipeline. CATO leverages recent
advances in multi-objective Bayesian optimization to effi-
ciently identify Pareto-optimal configurations, and automat-
ically compiles end-to-end optimized serving pipelines that
can be deployed in real networks. Our evaluations show that
compared to popular feature optimization techniques, CATO
can provide up to 3600× lower inference latency and 3.7×
higher zero-loss throughput while simultaneously achieving
better model performance.

1 Introduction

Machine learning (ML) models have grown to outperform
traditional rule-based heuristics for a variety of traffic analysis
applications, such as traffic classification [36, 44], intrusion
detection [73], and QoE inference [15, 47]. Over the past
few years, researchers have explored various approaches to
developing more accurate models, ranging from better feature
selection to employing sophisticated model types and traffic
representations [4, 12, 25, 29, 37, 46, 51, 55, 57, 62, 76, 81].
However, the predictive performance of ML-based solutions
often overshadows an equally critical aspect—the end-to-end
efficiency of the serving pipeline that processes network traffic
and executes the model.

For traffic analysis, a significant challenge lies not just in
developing accurate models, but in meeting the performance

demands of the network. Many network applications must
operate in real time with sub-second reaction times and/or pro-
cess hundreds of gigabits per second of traffic without packet
loss [72]. Unfortunately, models developed without consider-
ation of the associated systems costs of serving them in real
networks often turn out to be unusable in practice [14]. Cur-
rent approaches to this problem typically rely on lightweight
models [43], programmable hardware [36, 74], or early in-
ference techniques [11, 54], but many of these unnecessarily
compromise on predictive performance [16, 64, 74].

Recent studies have stressed the need to balance both the
systems costs and predictive performance of ML-based traffic
analysis solutions [14,64]. However, achieving this balance is
difficult. The end-to-end latency and throughput of a serving
pipeline, which includes packet capture, feature extraction,
and model inference, are difficult to approximate without
in-network measurements. Furthermore, the search space over
optimal feature representations is exponential in the number
of candidate traffic features, and also depends on how far into
a flow to wait before making a prediction. The added com-
plexity of not just considering one objective, but two, makes
end-to-end optimization of such systems an open challenge.

In this work, we present CATO, a generalizable framework
that systematically optimizes the systems costs and model
performance of ML-based traffic analysis pipelines. We start
by formalizing the development of ML models for traffic anal-
ysis as a multi-objective optimization problem. We then com-
bine multi-objective Bayesian optimization, tailored specif-
ically for traffic analysis, with a realistic pipeline profiler
to efficiently construct end-to-end optimized traffic analysis
pipelines. CATO simultaneously searches over the selected
features and the amount of captured traffic needed to compute
those features, factors which have been shown to significantly
impact both efficiency and predictive performance [14, 34].
During this search, CATO performs direct end-to-end mea-
surements on the resulting serving pipelines to both optimize
and validate their in-network performance.

We evaluate CATO on live network traffic and offline traces
across a range of classification and regression traffic analy-

sis tasks. Our experimental results show that compared to
popular feature optimization methods, CATO can reduce the
end-to-end latency of the serving pipeline by up to 3600×,
from several minutes to under 0.1 seconds, while simultane-
ously improving model performance. Additionally, CATO
can increase zero-loss classification throughput by up to 3.7×.

We hope that our work helps to realize the potential impact
of using machine learning to manage and improve networks.
Code is available at: https://github.com/stanford-esrg/cato.

2 Background and Motivation

The networking community has long attempted to use ma-
chine learning (ML) to perform traffic analysis tasks like QoE
inference [15, 26, 39, 47, 48], traffic classification [36, 44, 65],
intrusion detection [73], and load balancing [18]. As traffic
increasingly becomes encrypted, ML has also been shown to
be a promising technique for understanding otherwise opaque
network traffic, replacing traditional deep packet inspection
and other rule-based heuristics [12, 53, 63].

While significant progress has been made in improving the
predictive capabilities of models used for traffic analysis [12],
the real-world deployability of a model is based not just on
conventional notions of ML performance (e.g., accuracy, F1
score), but also on the associated systems-level performance
(e.g., latency, throughput) of the entire serving pipeline [14].
Given the real-time demands of network operations, any appli-
cations that rely on ML must nonetheless operate within tight
performance budgets. Even small delays can cause substantial
packet loss and render a model ineffective [15, 31], making
systems performance even more crucial for traffic analysis.
As a result, ML-based traffic analysis cannot solely target
high predictive performance—the end-to-end efficiency of
the entire serving pipeline must be jointly optimized as well.

2.1 ML-Based Traffic Analysis
ML-based traffic analysis typically begins with the ingestion
of raw traffic and ends with a prediction of a traffic property,
such as a service quality metric. While traffic analysis appli-
cations are diverse, we focus on the class of problems that
involves per-flow or per-connection inference, such as traf-
fic/device classification, QoE inference, or intrusion detection.
These applications typically make a prediction about an entire
flow or connection, then initiate an action such as triggering
an alert, blocking or rerouting the flow, or performing further
analysis downstream (Figure 1).

Traffic inference extends beyond merely executing the
model; it also involves packet capture, connection tracking,
flow reassembly, and feature extraction. Raw traffic undergoes
multiple operations, including header parsing, computation,
and encoding before arriving at the representation that is used
as input to the model. The final model inference step makes
the prediction, with its predictive performance determined

Raw
traffic

Packet Capture

Filtering
Connection tracking
Reassembly
etc.

Model Inference

Decision Tree
Random Forest
Linear Regression
DNN
etc.

Output

Feature
Repr.

Flow/
Conn.

Feature Extraction

Parsing
Statistics
Transformations
Encoding
etc.

Figure 1: A typical serving pipeline for ML-based traffic
analysis. Usability of a model hinges on both its predictive
accuracy and the systems performance of the entire pipeline.

by the model type (e.g., random forest, neural network), the
computed features, and the amount of data captured from the
flow. The end-to-end systems performance depends on all of
these aspects together.

For traffic analysis in particular, the choice of features
computed from the network traffic is often as important,
if not more so, than the model itself [29, 34, 55]. While
many previous works have focused on the model inference
stage [43, 46, 57, 64, 74, 81], design decisions made in the
earlier stages of the serving pipeline are crucial to its perfor-
mance and practicality, and warrant careful consideration.
Optimizing Predictive Performance. Many techniques
have been proposed to accurately make predictions about
network traffic. These approaches range from popular fea-
ture selection methods that choose highly predictive features
based on summary statistics [51], packet lengths [11], tim-
ing [37], and/or frequency domain characteristics [25], to new
techniques like GGFAST [55], which generates specialized
“snippets” to classify encrypted flows.

Following advancements in domains like computer vision
and natural language processing, network researchers have
also proposed sophisticated deep learning models [46, 57, 81]
and traffic representations [29, 62] designed to further opti-
mize the predictive performance of traffic analysis applica-
tions. However, most of these machine learning techniques are
evaluated using offline packet traces on metrics like accuracy,
precision, recall, or F1 score, overlooking the need to both
optimize and validate their in-network systems performance.
As a result, ML-based traffic analysis solutions that have been
demonstrated to have high accuracy in controlled laboratory
experiments often turn out to be unusable in real-time deploy-
ments because of the systems costs associated with running
them [14].
Optimizing Serving Efficiency. To address the systems
requirements of traffic analysis on modern networks, some
works propose using lightweight models [43, 74] or choose
features that reduce model inference time [69]. However,
these techniques can over-compromise on predictive per-
formance for speed, and often overlook the efficiency of
other pieces of the serving pipeline like packet capture
and feature extraction. Other approaches aim to optimize
serving efficiency by making predictions as early as pos-
sible [10, 11, 21, 60]. While many traffic analysis solu-
tions implicitly rely on the entire network flow or connec-

0 10 20 30 40 50
Packet depth

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

be
tte

r

FA FB FC

(a) Packet Depth vs. F1 Score.
The best feature sets differ at vary-
ing packet depths.

0 10 20 30 40 50
Packet depth

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(n

or
m

)

be
tte

r

FC @ 30 pkts

FB @ 50 pkts

FA FB FC

(b) Packet Depth vs. Exec. Time.
It can be cheaper to extract low-
cost features at greater depths.

Figure 2: Effects of different (feature set, packet depth) con-
figurations on F1 score and execution time. We highlight the
size and complexity of the search space.

tion [7, 9, 15, 40, 62], these “early inference” techniques make
predictions after observing a predefined number of packets.
However, there is no ideal packet depth (i.e., the number of
packets to use from any given flow) that is universally ef-
fective across applications. Choosing an appropriate value
typically requires prior domain-specific knowledge or resort-
ing to manual trial-and-error [54]. Consequently, existing
works that do explicitly choose a packet depth often opt for
values such as 10, 50, or 100 packets with little justifica-
tion [5, 29, 30, 45, 50, 55, 56, 64]. As we will show in Sec-
tion 5.2, this approach can miss significant opportunities for
gains in both efficiency and model performance.

2.2 Challenge of End-to-End Optimization
Despite progress towards individually optimizing the predic-
tive performance or serving efficiency of ML-based traffic
analysis, improvements to either area in isolation often result
in solutions that fail to achieve optimal combined model and
systems performance objectives. Systematically designing
traffic analysis pipelines that jointly optimize both of these
objectives remains an open challenge.

We illustrate this challenge by attempting to design an IoT
device classifier using the dataset published by Sivanathan
et al. [65]. Our goal is to construct a serving pipeline that is
Pareto-optimal across both its execution time and F1 score.
In other words, it should not be possible to further reduce
the execution time without also reducing the F1 score, or
vice versa. We combine techniques from prior work by ex-
perimenting with different features and early inference, both
of which have been shown (and we confirm) to significantly
impact multiple aspects of the pipeline, including predictive
performance, model inference time, and feature extraction
time [14, 34, 51, 54]. For this example, we choose from six
candidate flow features (Appendix A, Table 4) and vary the
packet depth collected in each flow from 1 to 50, which is
consistent with values used in prior work [11, 45, 54, 55]. We
train the model, compile the complete serving pipeline, and

exhaustively measure the F1 score and execution time for all
26 ×50 = 3,200 (feature set, packet depth) combinations.

As seen in Figure 2, F1 score and execution time vary
with the chosen features and packet depth. For readability,
we plot only three (labeled FA/FB/FC) out of the 64 possi-
ble feature sets, but find qualitatively similar results across
those not shown. We can see in Figure 2a that the best feature
sets by F1 score differ dramatically at different packet depths.
While FA has the highest F1 score within the first 10 packets,
the ranking flips at higher packet counts. Interestingly, the
predictive performance of FB and FC increase with packet
depth, whereas the opposite is true for FA. In Figure 2b, we
observe that for the same feature set, execution time gener-
ally increases with packet depth. However, the overall cost
of waiting 50 packets to extract FB is lower than the cost
of waiting 30 packets for FC. This reveals that having the
flexibility to optimize the timing of feature extraction can
significantly enhance serving efficiency, but is not always as
straightforward as simply minimizing analyzed packets. If we
look across both figures, we see that over-optimizing on exe-
cution time can also adversely affect F1 score and vice versa.
The non-linear trade-offs between objectives further highlight
the challenge in identifying Pareto-optimal solutions without
exhaustive measurement.

The trade-offs between predictive performance and systems
costs form a multi-dimensional and multi-objective search
space that extends beyond merely identifying which features
result in more accurate models. It also includes considerations
for features that are efficient to extract, as well as how much
data must be captured to compute and represent the features.
While exhaustive measurement of end-to-end systems costs
and model performance is feasible for just six candidate fea-
tures, it quickly becomes impractical when scaling up to the
dozens to hundreds of flow features typically considered by
developers. In our example, it took 5 days to train, compile,
and measure all 3,200 serving pipelines, but it would take over
7,000 years with 25 candidate features. The size and complex-
ity of the search space, coupled with the need to consider and
validate both model performance and systems cost objectives,
makes end-to-end optimization challenging. Addressing this
challenge is the central contribution of our work.

3 Cost-Aware Traffic Analysis Optimization

We introduce CATO (Cost-Aware Traffic Analysis Optimiza-
tion), our solution for cost-aware ML-based traffic analysis
optimization. The goal of CATO is to automatically construct
traffic analysis pipelines that jointly minimize the end-to-end
systems costs of model serving while maximizing predictive
performance. At its core, CATO combines a multi-objective
Bayesian optimization-guided search with a novel pipeline
generator and feature representation profiler to produce serv-
ing pipelines suitable for deployment in real networks.

Symbol Description

F Set of candidate network flow features
N Maximum connection depth
P (F) Power set of F
X Search space defined as X= P (F)×N
F Set of features in a feature representation
n Connection depth from which F is extracted
x Feature representation x = (F,n)
cost(x) Systems cost objective function
perf(x) Predictive performance objective function
Γ Set of Pareto-optimal solutions

Table 1: Summary of Variables

3.1 Problem Definition

CATO takes as input a set of candidate network flow features,
denoted by F . In line with conventional machine learning
practice, these are typically derived from domain expertise
or determined by the capabilities of the traffic collection tool.
Common examples for traffic analysis include mean packet
size, bytes transferred, connection duration, etc. [51], but can
also include more complex features like frequency domain
[25,77] and application-layer characteristics [15]. CATO also
takes as input a maximum connection depth N ∈ R, which
serves as an upper bound on the amount of data in the con-
nection that is considered for inference. Concretely, this can
be the number of initial packets (i.e., packet depth), bytes, or
time into the connection prior to feature extraction. These
inputs define the search space X= P (F)×N, where P (F)
is the power set of F , i.e., the set of all possible subsets of F ,
from which CATO selects feature representations.

A feature representation x = (F,n) consists of a set of fea-
tures F ⊆ F and a value n ≤ N that indicates the connection
depth from which F is extracted. Each feature representation
gives rise to a serving pipeline with an associated end-to-end
systems cost and predictive performance, denoted by the func-
tions cost(x) : X→ R and perf(x) : X→ R. We note that
these functions are general and can be user-defined according
to the specific objectives of the traffic analysis problem. For in-
stance, cost(x) can refer to the end-to-end inference latency,
execution time, (negative) throughput, etc., while perf(x) can
be defined as F1 score, accuracy, (negative) mean-squared-
error, etc. We list a summary of variables in Table 1.
Multi-objective Optimization. We formalize the develop-
ment of ML models for traffic analysis as a multi-objective
optimization over the search space X. The aim is to identify
the Pareto front Γ ⊆ X, which consists of all non-dominated
points in X. In other words, Γ contains the maximally desir-
able feature set / connection depth configurations, where no
further improvement in systems cost or model performance
can be achieved without compromising the other objective.

We deliberately choose a multi-objective optimization over
a single-objective approach. Unlike a single-objective prob-
lem that aims to maximize model performance while satisfy-
ing system constraints, or vice versa, a multi-objective solu-
tion offers several advantages. The first is that the exact sys-
tem and model performance requirements may not be known

Cand.
Features

Max.
Depth

Search Space
Reduction

+
Prior

Construction

Multi-objective BO

Samplecost()
perf()

Pipeline
Generation Measurement

Pareto-
optimal

Optimizer

Profiler Pareto-
optimal

Pipelines

Figure 3: CATO combines a multi-objective BO-based Opti-
mizer and a realistic pipeline Profiler to construct and validate
efficient ML-based traffic analysis serving pipelines.

a priori (e.g., due to variable traffic rates or shared system
resources), making it difficult to precisely define constraints.
Second, if requirements change, a single-objective approach
would necessitate redefining and rerunning the optimization
with new objectives and constraints [68]. By expressing the
problem as a multi-objective optimization, CATO identifies
multiple Pareto-optimal solutions that each achieve a different
balance between systems cost and model performance, pro-
viding the flexibility to accommodate changing application
needs (e.g., adjusting accuracy thresholds or imposing new
latency constraints) without re-optimization.

3.2 CATO Overview
CATO constructs end-to-end optimized traffic analysis pipe-
lines according to the systems cost and model performance
objective functions. It does so by efficiently identifying
Pareto-optimal feature representations, and generating
ready-to-deploy serving pipelines for a given model from
those feature representations. Figure 3 depicts the high-level
design, which consists of the Optimizer and the Profiler:
• The Optimizer takes the set of candidate features and max-

imum connection depth, and performs a multi-objective
Bayesian optimization-guided search over the feature
representation space. It periodically queries the Profiler for
the systems costs and model performance of its sampled
feature representations, which it uses to further refine the
search for the Pareto front.

• The Profiler accepts queries from the Optimizer, compiles
binaries for the end-to-end serving pipeline, and runs
them to accurately measure cost(x) and perf(x). These
measurements serve the dual purpose of guiding the
Optimizer towards Pareto-optimal solutions and validating
the in-network performance of the generated pipelines.

3.3 The CATO Optimizer
In general, measuring cost(x) and perf(x) for an arbitrary
feature representation is computationally expensive. It in-
volves generating the serving pipeline, training and evaluat-
ing the ML model, and measuring performance costs either
through simulation or in physical testbeds. The massive size

of the search space and the computational cost of evaluating
the objective functions precludes the possibility of exhaus-
tively searching all possible configurations. To handle this
intractability, CATO leverages Bayesian Optimization (BO),
building on recent developments in multi-objective design
space exploration [52] and sample-efficient BO [32] to effi-
ciently estimate the Pareto front in X.
Why Bayesian Optimization? Bayesian optimization is
a technique designed for global optimization of black-box
objective functions [35], and has seen success in domains
like hyperparameter tuning [66, 70], compiler optimiza-
tion [28, 52], and robotics [17]. It is particularly useful for
expensive-to-evaluate, non-linear objectives, as in our case
with cost(x) and perf(x). Moreover, the discontinuous
nature of these objective functions make the use of traditional
gradient-based or linear optimizers a poor fit for our problem.

BO works by building a probabilistic surrogate model for
the objective function(s), and uses it to make decisions about
which points (e.g., feature representations) in the search space
to evaluate next. Typically, BO begins by sampling an ini-
tial number of points at random to build the surrogate model.
Each subsequent iteration involves generating a set of candi-
date points, using the surrogate model to predict the objective
function’s output on the candidate set, and choosing the next
“best” (e.g., maximizing Expected Improvement) point to eval-
uate using the real objective function. The surrogate model
is then updated to include the newly evaluated point, and the
process repeats until some stopping criteria is met, such as a
maximum number of iterations or a satisfactory level of con-
vergence [24, 35]. While BO is not guaranteed to work well
in high-dimensional, multi-objective spaces [61], we describe
how we augment it for our context later in this section. We
compare the performance of BO against other search tech-
niques in Section 5.3 and show that our approach is efficient
at approximating the Pareto front.
BO Formulation. We formulate CATO’s search process as
a multi-objective Bayesian optimization problem with |F |+1
dimensions: one dimension per feature in F and one for the
connection depth n. Each feature parameter is represented
by a binary indicator variable, which denotes whether or not
the feature is included. The connection depth parameter is
separately encoded as an integer or real-valued variable upper
bounded by the maximum connection depth N. This setup
lets CATO concurrently search over both features and con-
nection depth while optimizing for systems cost and model
performance. We define this search as a minimization of the
two functions cost(F,n) and −perf(F,n). These objective
functions are managed by the Profiler (Section 3.4), which
generates complete serving pipelines according to the feature
representations sampled by the Optimizer, and returns the
end-to-end systems cost and model performance metrics.
Tailoring BO for Traffic Analysis. In its basic form, BO
has several limitations. Conventional applications of BO typi-
cally involve single-objective, low-dimensional (fewer than

20) search spaces [24, 61]. However, our traffic analysis prob-
lem is inherently multi-objective, high-dimensional, and in-
volves a complex search space with mixed categorical (fea-
tures) and numerical (connection depth) variables. To address
this, we augment the CATO Optimizer with two preprocess-
ing techniques to improve its sample efficiency (Figure 3).
The first is a dimensionality reduction step that strategically
discards candidate features that are unlikely to improve the
model’s predictive performance regardless of its impact on
the end-to-end systems costs. By default, we exclude features
with a mutual information [71] score of zero, which indicates
no direct informational relationship with the target variable.

The second technique incorporates prior probabilities into
the BO formulation, accelerating the search by providing the
Optimizer with “hints” about the approximate locations of
Pareto-optimal feature representations. To account for both
objectives, CATO constructs two sets of priors: one over the
feature space that targets perf(x), and one over the connec-
tion depth that targets cost(x). The set of priors over the
feature space encodes each feature’s relative contribution to
the model’s performance, and are derived from the mutual
information scores computed in the dimensionality reduction
step. Formally, we define the prior probability of whether a
feature f is part of a Pareto-optimal feature representation
x = (F,n) as P(f ∈ F |x ∈ Γ) = (1− δ) I(f)

Imax
+ δ

2 , where I(f)
represents the mutual information of f with respect to the tar-
get variable, Imax is the maximum mutual information among
all candidate features, and δ is a damping coefficient. The
damping coefficient is used to adjust the priors to prevent the
feature with the highest mutual information from always be-
ing included. δ = 0 signifies no damping, while δ = 1 results
in uniform priors for all features. These probabilities encour-
age CATO to more frequently explore regions of the search
space that include features with higher predictive power.

The prior over the connection depth is represented by a
probability mass function that decays linearly as the connec-
tion depth increases. The rationale is that for the same feature
set, waiting longer to capture more packets or bytes before
feature extraction correlates with worse systems performance.
This prior encourages CATO to more frequently explore rep-
resentations that require fewer packets or less data, despite
not requiring domain-specific knowledge about the optimal
connection depth at which to collect features. As we will show
in Section 5.5, CATO is robust to reasonably large connection
depth ranges.

We emphasize that these preprocessing steps can be per-
formed efficiently without needing to evaluate the objective
functions. Despite the term “prior,” no prior knowledge about
the optimal features or connection depth needs to be supplied
by the user. CATO automatically derives the priors used to
accelerate its search, thereby streamlining its usability.

3.4 The CATO Profiler

The CATO Profiler evaluates the feature representations sam-
pled by the Optimizer based on the concrete definitions of
cost(x) and perf(x). To accomplish this, it generates code
for the packet capture and feature extraction stages of each
sampled point, trains the model, and runs the full serving
pipeline to directly measure its end-to-end systems costs and
model performance. This measurement serves two purposes:
(1) guiding the search process of the Optimizer, and (2) vali-
dating the in-network performance of identified solutions.
Why Measure? Using heuristics to estimate the end-to-end
systems cost of a traffic analysis pipeline is difficult. Much
like how existing heuristics that approximate model perfor-
mance often fail to capture interdependencies and correlations
among features [6, 34, 71], systems cost heuristics can sim-
ilarly fail to capture the complexities of packet capture and
feature extraction. Traffic analysis is particularly sensitive to
this, since the processing steps during feature extraction often
overlap in non-trivial ways. For instance, computing mean
TCP window size and the number of ACKs sent in a con-
nection require parsing each packet down to its TCP header,
a shared task that must be factored into the end-to-end cost.
Likewise, computing the mean window size also involves
calculating its sum, the latter of which can then essentially be
used for free. Other factors like resource contention and char-
acteristics of the network traffic (e.g., bursty vs. non-bursty)
can also unpredictably affect the end-to-end systems cost [58].

We argue that rather than trying to model or predict these
complex systems-level interactions, it is both more accurate
and useful to perform direct measurement. With direct mea-
surement, CATO captures the actual end-to-end cost of the
serving pipeline, encompassing all critical components in-
cluding packet capture, feature extraction, and the model in-
ference itself. Accurate measurement not only helps the Op-
timizer make well-informed decisions, but also helps users
build confidence in validating whether identified solutions are
operationally viable. Although this approach can be computa-
tionally expensive, the cost of training the model, generating
the full serving pipeline, and measuring its performance is
balanced by the sample efficiency of the Optimizer.
Pipeline Generation. To evaluate different feature represen-
tations during the search process, we require an automated
way to measure cost(x) and perf(x) for any x ∈ X. With
a search space size of O(2|F |×N), manually implementing
packet capture, feature extraction, and model inference for
each evaluated point is impractical. One approach that enables
flexible evaluation is “runtime branching,” which uses branch-
ing logic at runtime to determine which paths in the code
should be executed to extract a given feature representation.
However, runtime branching introduces additional overhead
that can contaminate the cost measurements of performance-
sensitive traffic analysis pipelines. Instead, CATO employs
conditional compilation to build and run customized end-

to-end serving pipelines tailored to each configuration. The
resulting binary matches the performance of a manually imple-
mented pipeline, containing only the set of operations needed
to collect traffic data up to the specified connection depth,
extract the corresponding features, and execute the model in-
ference. This technique not only constructs fully operational
traffic analysis pipelines, but also provides the flexibility to
accurately measure any point in the search space.
Pipeline Measurement. CATO presents a testbed inter-
face that replicates a real-world deployment scenario of the
pipeline. For model performance measurements, the Profiler
trains a fresh model for each representation sampled by the
Optimizer and directly measures its predictive performance
to account for any interaction effects between features. The
final performance metric is derived from a hold-out test set.
We note that CATO operates on pre-labeled datasets, mean-
ing it does not focus on automatic labeling or ground truth
generation. The framework is designed to optimize model
accuracy and system performance based on this labeled input.
For systems cost measurements, CATO either simulates traf-
fic inputs from the training data, or, when feasible, deploys the
full serving pipeline in its target network environment (e.g., a
passive monitoring or bump-in-the-wire deployment model)
for end-to-end measurements. While each measurement can
be expensive, the Optimizer is intentionally designed to min-
imize the number of measurements needed to approximate
the Pareto front. We report wall-clock times for several of our
evaluated use cases (Section 5.1) in Appendix E.

4 Implementation of CATO

We detail our implementation of CATO, covering the Opti-
mizer, Profiler, model training, and objective functions.
Bayesian Optimization. We implement the CATO Op-
timizer using HyperMapper [52], a Bayesian optimization
framework for design space exploration. HyperMapper sup-
ports multi-objective optimization with mixed-variable search
spaces, but is not tailored specifically for high-dimensional
BO. We use πBO [32] for prior injection, but adapt its im-
plementation to incorporate CATO-generated priors in multi-
objective use cases. We use a random forest as the surrogate
model, which has been shown to perform well compared to
more traditional Gaussian processes for discontinuous and
non-linear objective functions [52]. The prior over the packet
depth is constructed using the Beta distribution with α = 1
and β = 2. We initialize the Optimizer with three iterations of
random search space exploration and choose δ = 0.4 based
on empirically tuned values (Section 5.5).
Pipeline Generation. The CATO Profiler generates serving
pipelines using a modified version of Retina [72], a Rust
framework that compiles traffic subscriptions into efficient
packet processing pipelines. A subscription defines the rules
for how incoming traffic should transformed into a specific

1 fn on_packet(&mut self, packet: Packet) {
2 #[cfg(any(feature="iat_sum"))]
3 {
4 let pkt_timestamp = packet.timestamp();
5 self.iat_sum += pkt_timestamp - last_timestamp;
6 let last_timestamp = pkt_timestamp;
7 }
8 #[cfg(any(feature="ttl_min",feature="winsize_max"))]
9 let eth = packet.parse_eth();

10 #[cfg(any(feature="ttl_min",feature="winsize_max"))]
11 let ipv4 = eth.parse_ipv4();
12 #[cfg(any(feature="ttl_min"))]
13 self.ttl_min = self.ttl_min.min(ipv4.ttl());
14 #[cfg(any(feature="winsize_max"))]
15 {
16 let tcp = ipv4.parse_tcp();
17 self.winsize_max = self.winsize_max.max(tcp.winsize());
18 }
19 }
20
21 fn extract(&mut self) -> Vec<f64> {
22 vec![
23 #[cfg(feature="iat_sum")]
24 self.iat_sum,
25 #[cfg(feature="ttl_min")]
26 self.ttl_min,
27 #[cfg(feature="winsize_max")]
28 self.winsize_max,
29]
30 }

Figure 4: An example portion of the CATO Profiler’s tem-
plate subscription module. Each operation is predicated on
its associated features and conditionally compiled with the
cfg macro. For instance, if the evaluated feature set consists
of ttl_min and winsize_max, then only lines 9, 11, 13, 16,
and 17 will execute on each new packet, and only those two
features will be extracted in the final feature representation.
This enables dynamic cost profiling that matches the charac-
teristics of a manually implemented feature extraction stage.

representation, and invokes a callback on the returned data.
We implement the model inference stage in the callback, and
subscribe to a template feature representation that can be
modified at compile-time to the specific representation being
evaluated. To dynamically generate the custom packet capture
and feature extraction stages, we create a Retina subscription
module that implements the processing steps needed to extract
all candidate features. Each operation (e.g., parse an IPv4
header, add to a cumulative sum of packet inter-arrival times,
etc.) is then annotated with a configuration predicate that
specifies the subset of features necessitating its execution. If
the feature representation being evaluated contains at least
one of the predicated features, the predicate evaluates to true
and the operation is conditionally compiled into the binary.
This technique avoids redundant computation in shared steps,
such as parsing headers, and ignores operations associated
with features that are not included. For packet capture, we
annotate the subscription with an early termination flag that
stops data collection once the connection depth is reached.

Figure 4 shows pseudo-code for an example portion of the
template subscription module. We implement 67 candidate
features (Appendix A, Table 4) in 1,600 lines of Rust code.
We note that the chosen candidate features are not specific
to any use case: they are widely used in traffic analysis ap-
plications and are common features exposed by open source
tools [3, 15, 16, 23, 51, 64, 72, 77]. We use number of packets

into the connection to measure connection depth.
We note that our Profiler implementation uses Retina [72]

to target commodity servers. However, CATO’s core design
principles remain applicable to optimizing and validating
hardware-based traffic analysis pipelines, which we discuss
further in Section 6.
Model Training. As an optimization framework, CATO is
general to the specific type of model used in the traffic anal-
ysis pipeline. We implement support for three model types:
decision trees (DT), random forests (RF), and deep neural
networks (DNN). For DT and RF, we use scikit-learn’s Deci-
sionTreeClassifier and RandomForestClassifier, with 5-fold
nested cross validation and grid search for hyperparameter
tuning. We tune the maximum tree depth from 3–20 and
set the number of estimators to 100 for RF. To match the
speed of the Rust-based feature extraction stage, we retrain
the best-performing DT and RF models in Rust using the
SmartCore [1] library and evaluate the final Rust model on a
hold-out test set containing 20% of the data.

For DNN, we implement a fully connected feedforward
neural network in TensorFlow, consisting of three hidden
layers with ReLU activation and L2 regularization. We apply
dropout to prevent overfitting and use the Adam optimizer
for training. Since Rust lacks mature DNN libraries, we train
and evaluate the DNN models entirely in Python/TensorFlow.
Additional details are provided in Appendix C.
Objective Functions. We use end-to-end inference latency,
zero-loss classification throughput, and pipeline execution
time as three different metrics for systems cost. End-to-end
inference latency measures the duration from the arrival of
the first packet in the connection to the model’s final predic-
tion. This includes the time spent extracting features from raw
traffic, the model inference time, and time spent waiting for
packets to arrive. Zero-loss throughput is the highest ingress
traffic rate that can be sustained by the serving pipeline with
no packet drops, which we negate to match the sign of cost(x)
minimization. The execution time measures the total CPU
time spent in the serving pipeline, excluding time between
packets. This metric is less dependent on the specific char-
acteristics of the input traffic, and is an indirect measure of
both latency and throughput. Although these can be combined
into a single cost metric, we evaluate them separately to show
CATO’s flexibility. Depending on the traffic analysis use case,
which we detail in the next section, we use either the F1 score
or root-mean-squared error, calculated from the predictions
on the hold-out test set as the model performance metric.

5 Evaluation

We evaluate CATO over a variety of configurations and use
cases. Section 5.1 details our datasets and testbeds. In Sec-
tion 5.2, we show that CATO can help traffic analysis applica-
tions achieve substantially lower inference latency and higher

Use Case Type Traffic Model

app-class Classification Live Decision Tree
iot-class Classification Dataset Random Forest
vid-start Regression Dataset Deep Neural Network

Table 2: Evaluation Use Cases

throughput without compromising model performance, and
in many cases improve upon both metrics. We also compare it
with Traffic Refinery [14], a recent system for cost-aware ML
on network traffic. Section 5.3 compares the efficiency of the
CATO Optimizer to alternative Pareto-finding approaches,
and Section 5.4 performs an ablation study of the Profiler. In
Section 5.5, we run micro-benchmarks on CATO’s sensitivity
to various search space sizes and hyperparameters.

5.1 Datasets and Testbeds

We consider three use cases in our evaluations: web appli-
cation classification (app-class), IoT device recognition
(iot-class), and video startup delay inference (vid-start).
These are typical analysis tasks of varying complexity that are
representative of the type of ML-based inference performed
on network traffic. Table 2 summarizes them, with more de-
tails provided in Appendix B.
Web Application Classification. While open-source traf-
fic classification datasets exist, replaying them at modern
line rates is challenging without duplicating flows. To eval-
uate serving pipelines against real traffic at high speeds, we
develop a use case that identifies one of six common web
applications from live traffic on a large university network.
This type of classification is typically used by web applica-
tion firewalls or in the early stages of network QoE inference
pipelines [2,15]. For ground truth, we label connections using
the server name in the TLS handshake. We train and evaluate
decision tree models using flow statistics captured from the
network, then deploy them to the same network for real-time
serving using Retina [72].
IoT Device Recognition. To help make our results repro-
ducible, we also consider an IoT device recognition use case
based on the dataset published by Sivanathan et al. [65]. We
use a random forest to classify connections as belonging to
one of 28 IoT device types. Although real-time throughput
experiments are not feasible without duplicating flows, we use
this dataset to report micro-benchmarks and evaluate CATO’s
ability to approximate the true Pareto front.
Video Startup Delay Inference. We further demonstrate
CATO’s generalizability to different traffic analysis tasks
and model types through a regression use case that predicts
the startup delay of video streams. Startup delay inference is
widely used in analysis of encrypted video traffic as a measure
of QoE [8, 15, 49]. We choose startup delay (rather than other
QoE metrics) to provide a regression task that complements
the previous two classification use cases. We also adopt a

more complex DNN instead of a tree-based model, using the
YouTube dataset published by Bronzino et al. [15].

5.2 Model Serving Performance
We first examine the end-to-end inference latency, zero-loss
throughput, and predictive performance of CATO-optimized
serving pipelines. Note that CATO itself is not a classifier,
but a general framework for optimizing ML-based serving
pipelines for real-time traffic analysis. Therefore, instead of
directly comparing CATO with existing classifiers or models,
we evaluate it against optimization strategies commonly used
in prior work to build those models. We use the following
feature optimization methods and combine them with early
inference techniques as our baselines:

• ALL: Use all available features.
• RFE10: Select the top ten features by recursive feature

elimination [27]. RFE trains a model using all available
features, then iteratively removes the least important fea-
ture and retrains until the desired number remains.

• MI10: Select the top ten features based on mutual in-
formation [71]. This is a model agnostic algorithm that
measures how much information each feature contributes
to the target variable and picks the most relevant ones.

Prior traffic analysis solutions typically wait until the end of
the connection before making a prediction [7, 9, 15, 40, 62] or
use a fixed packet depth for early inference [5, 10, 11, 29, 45,
50,56]. For example, Peng et al. [54] collects up to the first 10
(including TCP handshake) packets, while recent work like
GGFAST [55] use the first 50. For a thorough analysis, we
compare against these strategies by running each baseline at
packet depths of 10, 50, and all packets. CATO does not as-
sume a predefined optimal packet depth, but searches over the
entire feature representation space as part of its optimization
process. We choose a maximum packet depth of 50 and run
for 50 iterations, which is consistent with common machine
learning practices [13, 32]. We show how CATO reacts to
different packet depth ranges in Section 5.5.
End-to-End Inference Latency. Figures 5a, 5b, and 5c
show the end-to-end inference latency and predictive per-
formance (F1 score or RMSE) for iot-class, vid-start,
and app-class, respectively. Each CATO sample represents
a candidate point explored during the optimization process,
with CATO’s Pareto front constructed from the set of non-
dominated points. For iot-class and vid-start, all points
on CATO’s Pareto front dominate the baseline solutions,
achieving equal or better predictive performance with lower
end-to-end latency. For iot-class, CATO can reduce the
inference latency by 11–79× compared to solutions that use
the first 10 packets in the connection, 817–2000× compared
to those that use the first 50, and over 3600× (from several
minutes to under 0.1 seconds) compared to those that wait
until the end of the connection. Likewise for vid-start,
CATO generates solutions that can infer video startup delays

10−2 10−1 100 101 102 103

End-to-end inference latency (s)

0.90

0.92

0.94

0.96

0.98

1.00

F1
 sc

or
e

better

CATO Pareto
CATO samples

ALL10
ALL50
ALLall

RFE1010
RFE1050
RFE10all

MI1010
MI1050
MI10all

(a) iot-class latency

10−1 100 101 102 103

End-to-end inference latency (s)

2300

2400

2500

2600

RM
SE

 (m
s)

be
tte

r

CATO Pareto
CATO samples

ALL10
ALL50
ALLall

RFE1010
RFE1050
RFE10all

MI1010
MI1050
MI10all

(b) vid-start latency

10−2 10−1 100 101 102

End-to-end inference latency (s)

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

better

CATO Pareto
CATO samples

ALL10
ALL50
ALLall

RFE1010
RFE1050
RFE10all

MI1010
MI1050
MI10all

(c) app-class latency

500 1000 1500 2000 2500
Zero-loss throughput (classifications per sec.)

0.80

0.85

0.90

0.95

1.00

F1
 sc

or
e

be
tte

r

CATO Pareto
CATO samples

ALL10
ALL50
ALLall

RFE1010
RFE1050
RFE10all

MI1010
MI1050
MI10all

(d) app-class throughput

Figure 5: Comparison of F1 score / RMSE vs. end-to-end inference latency / zero-loss throughput (single-core) for iot-class,
vid-start, and app-class serving pipelines. CATO identifies multiple solutions on its Pareto front that dominate those found
by traditional optimization techniques, and can achieve significantly better systems and predictive performance.

in less than one second (a 2.2–2900× speedup, depending on
baseline) while also reducing the mean squared error of its
predictions.

Since end-to-end inference latency is largely dominated by
packet inter-arrival times, this improvement can be attributed
to CATO’s ability to find alternative sets of features using the
fewest packets necessary without compromising the predic-
tive performance of these popular feature selection methods.
For example, RFE10 using the first 10 packets (RFE1010) in
iot-class achieves an F1 score of 0.970 with an inference
latency of 7.9 seconds. However, CATO identifies a different
set of features using just the first 3 packets for a better F1
score of 0.979 and an inference latency of 0.1 seconds.

We find a similar pattern for app-class, where CATO-
optimized pipelines outperform most baseline methods across
both objectives. While MI1010 and RFE1050 achieve slightly
higher F1 scores (0.963 and 0.962), CATO produces a solu-
tion with a nearly identical F1 score (0.960) and a latency
of 0.54 seconds—2.6× and 19× faster than MI1010 and
RFE1050, respectively. These results reinforce that for tra-
ditional feature optimization methods, it is not always clear a
priori which feature set at which packet depth results in the
best model performance or serving efficiency. Through end-
to-end optimization of both objectives over the entire feature
representation space, CATO is able to automatically derive
and validate the performance of faster and more accurate
traffic analysis pipelines.
Zero-Loss Classification Throughput. We compare the pre-
dictive performance and classification throughput of solutions
found by CATO with those found by the baseline methods
for app-class. We exclude iot-class and vid-start due
to limitations in replaying the traces at high speeds without
repeating flows. For a realistic assessment, we use live traffic
from our campus network, but restrict all experiments to a sin-
gle core to avoid saturating our network’s maximum ingress
throughput. In an actual deployment scenario, the throughput
can be easily scaled up by adding more cores, owing to the
per-core scalability of Retina [72]. More details about our
throughput experiments can be found in Appendix D.

Figure 5d shows that CATO’s solutions outperform the

103 104

Execution time (ns)

0.8

0.9

1.0

F1
 sc

or
e

better

CATO Pareto
CATO samples

PC10
PC50
PCall

PC+PT10
PC+PT50
PC+PTall

PC+PT+TC10
PC+PT+TC50
PC+PT+TCall

Figure 6: F1 score vs. pipeline execution time for iot-class
using CATO and Traffic Refinery (in red). While PC10
achieves a strong trade-off due to its low cost, CATO more
consistently finds solutions closer to the Pareto front.

baselines in both throughput and F1 score, with the exception
of MI1010. Despite this, CATO successfully identifies the
feature representation with the highest overall F1 score and
the one with the highest zero-loss throughput. For a decrease
in F1 score from 0.96 to 0.93, CATO can increase throughput
by 37%. Compared to solutions that wait until the end of the
connection, CATO can improve the zero-loss throughput by
a factor of 1.6–3.7×, and 1.3–2.7× for those that require the
first 50 packets while also achieving higher model perfor-
mance. Notably, CATO achieves these results after exploring
just 50 feature representations out of 267 × 50 = 7 × 1021

(67 candidate features, up to a maximum packet depth of 50).
Comparison with Traffic Refinery. We further compare
CATO with Traffic Refinery [14], a recent traffic analysis
framework that also facilitates joint evaluation of model per-
formance and system costs. Unlike CATO, Traffic Refin-
ery requires manual exploration of flow features and connec-
tion depth. We simulate Traffic Refinery’s cost profiler using
CATO’s execution time cost metric and replicate its built-in
packet counter (PC), packet timing (PT), and TCP counter
(TC) feature classes. While Traffic Refinery defaults to mak-
ing an inference after ten seconds into the flow, we evaluate
it at packet depths of 10, 50, and all packets for consistency
with the above baselines (see Appendix F for more details).

Figure 6 plots F1 score vs. execution time for iot-class

using CATO and Traffic Refinery. The results show that Traf-
fic Refinery’s macro-aggregation of standard feature classes
is less efficient than CATO at finding optimal trade-offs.
CATO achieves better accuracy at lower cost across all sam-
pled points except PC10. Even in this case, it is still able to
identify an alternative representation with a similar F1 score
and a modest 344 ns increase in pipeline execution time.
While packet counters alone at a packet depth of 10 happen to
perform well for iot-class at minimal cost, adding packet
timing and TCP state information further improves accuracy
but incurs a much higher execution time. Identifying such
configurations with Traffic Refinery requires trial-and-error,
as it is not clear which combinations perform best at which
packet depths. In contrast, CATO more efficiently explores
the feature representation space, clustering solutions closer
to the Pareto front and more effectively balancing predic-
tive performance and systems cost across a broader range of
configurations.

5.3 Optimizer Efficiency
In this section, we evaluate the efficiency of the CATO Opti-
mizer by measuring the quality of its computed Pareto front
and the speed at which it converges to the true Pareto front.
Since it is infeasible to exhaustively measure all points in X
to obtain the true Pareto front for the default candidate feature
set size of 67, we evaluate on a smaller candidate set of six
features (Appendix A, Table 4) for the iot-class use case in
order to obtain the ground truth. We compare the Optimizer
with three alternative Pareto-finding algorithms:

• SIMA: Use simulated annealing [38], a metaheuristic for
solving optimization problems with a complex search
space. We provide details of our multi-objective imple-
mentation in Appendix G.

• RAND: Sample a random subset of features at a random
packet depth without replacement.

• ITERALL: Use all available features but increment the
packet depth on each iteration, starting from one.

We remark that these algorithms differ from the baseline meth-
ods described in the previous section in that they attempt to
estimate the Pareto front rather than a single point solution.
In N search iterations, each of these alternative approaches
makes exactly N calls to cost(x) and perf(x).
Pareto Front Quality. We compare the quality of the Pareto
front estimated by each algorithm using Hypervolume In-
dicator (HVI). HVI is a common metric used to compare
multi-objective algorithm performance, and measures the area
between the estimated Pareto front and the true Pareto front
bounded by a reference point [41]. We use pipeline execution
time as our chosen systems cost metric and F1 score for model
performance. Since F1 score and execution time have differ-
ent raw value ranges, we normalize the data before computing
HVI to assign similar importance to both objectives.

We run each search algorithm for 50 iterations at a max-

10−2 10−1 100

Execution time (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

better

True Pareto
CATO Pareto
CATO samples
SimA Pareto
SimA samples
Rand Pareto
Rand samples
IterAll Pareto
IterAll samples

Figure 7: Estimated Pareto fronts after 50 iterations. CATO
outperforms other Pareto-finding approaches, especially in
regions with high F1 scores and low execution times. The
sampled points illustrate the candidate solutions explored by
each algorithm during the optimization process, while only
the Pareto-optimal points are included in the final output.

imum packet depth of 50. In Figure 7, we plot the feature
representations sampled at each iteration alongside the cor-
responding Pareto front constructed from the non-dominated
points. These sampled points represent candidate solutions
explored during optimization and do not directly impact the
end-to-end traffic analysis pipeline. While many intermediate
samples overlap between algorithms due to inherent random-
ness, they primarily serve to illustrate the regions explored by
each algorithm and are not included in the final solution. For
reference, we also show the true Pareto front computed from
exhaustively measuring all 26 ×50 = 3,200 feature represen-
tations in the search space.

We observe that CATO’s Pareto front closely approximates
the true Pareto front while sampling less than 1.6% of the
search space. Using a worst-case reference point (F1 score of
0 and normalized execution time of 1), CATO achieves an
HVI of 0.98, compared to 0.88, 0.86, and 0.77 achieved by
SIMA, RAND, ITERALL, respectively. We note that CATO
does not entirely dominate all alternative search algorithms,
especially around F1 scores of 0.3. However, it performs better
at higher and lower extremes. This behavior can be attributed
to CATO’s tendency to explore representations that require
very few packets (due to the decay-shaped prior placed over
connection depth), while also injecting priors based on each
feature’s relative importance. If we only consider solutions
with an F1 score of at least 0.8, the HVI is 0.95 for CATO,
0.39 for SIMA and RAND, and 0 (no solutions found) for
ITERALL.

Convergence Speed. Figure 8 compares the sample effi-
ciency of CATO with alternative search algorithms. We ex-
tend the 50 sample explorations commonly used by ML prac-
titioners [13, 32] to 1,500 to examine the convergence rate
towards the true Pareto front as most of the search space is
explored. We also plot the performance of CATO’s base-
line BO formulation without dimensionality reduction and
prior injection (CATOBASE). We exclude ITERALL from

0 200 400 600 800 1000 1200 1400
Number of iterations

0.90

0.92

0.94

0.96

0.98

1.00

HV
I

CATO
CATO_BASE
SIM_ANNEAL
RAND_SEARCH

Figure 8: CATO efficiently converges to the true Pareto front.
We show the mean and standard error of the HVI with a worst-
case reference point across 20 runs.

this analysis since more than 50 iterations would exceed the
maximum packet depth covered by the ground truth Pareto
front. Moreover, we find that the HVI for ITERALL does not
show significant improvement beyond this point.

We can see that CATO converges to the true Pareto front
fastest, demonstrating a more sample-efficient approach to
optimizing ML-based traffic analysis pipelines. CATO sur-
passes 0.99 HVI (using a worst-case reference point) within
87 iterations on average compared to CATOBASE’s 240 itera-
tions, demonstrating a speedup of 2.76×. This speedup can
be attributed to the incorporation of priors on the optimization
parameters as described in Section 3.3, which helps CATO
emphasize more promising regions in the search space. SIMA
and RAND are less sample efficient, surpassing 0.99 HVI at
1,295 iterations and 1,469 iterations for a CATO speedup of
14.9× and 16.9×, respectively.

5.4 Ablation Study of the Profiler

We assess the impact of the Profiler on the estimated
Pareto front found by CATO. We retain the Optimizer,
including dimensionality reduction and prior injection,
and perform an ablation study by replacing cost(x) and
perf(x) measurements with heuristic metrics. We devise
four variants of CATO. The first is CATO W/ NAÏVE COST,
which replaces the original cost metric with the sum of the
costs of each feature in isolation. This design captures the
end-to-end systems costs of individual features, but fails to
account for shared processing steps during packet capture
and feature extraction. The second is CATO W/ MODEL INF
COST, which measures the model inference speed but ignores
the cost of packet capture and feature extraction. CATO
W/ PKT DEPTH COST directly uses packet depth as the cost.
CATO W/ NAÏVE PERF retains the original cost(x) metric
but replaces perf(x) with the sum of each feature’s mutual
information with respect to the target variable. This version
does not account for the effects of feature interactions.

We run each variant for 50 Optimizer iterations using the
smaller candidate feature set, then measure (using the Pro-

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
HVI

CATO

CATO w/
naive cost

CATO w/
model inf cost

CATO w/
pkt depth cost

CATO w/
naive perf

Figure 9: CATO with alternative Profiler metrics. End-to-end
measurements prove useful for estimating the Pareto front
and validating the performance of identified solutions.

filer) the true perf(x) and cost(x) of each sampled point in
a post-processing step to compare HVI. Figure 9 reveals that
CATO comes closest to the true Pareto front, demonstrating
that there is value to incorporating real model performance
and systems costs measurements as feedback for the Opti-
mizer. Furthermore, we note that none of the variants provide
a means to validate the expected in-network performance
of their identified solutions. In particular, CATO W/ NAÏVE
PERF and CATO W/ PKT DEPTH COST do not yield meaning-
ful performance metrics. CATO W/ NAÏVE COST and CATO
W/ MODEL INF COST are better, but may overestimate or
underestimate the true systems cost, respectively. Depending
on the concrete definition of cost(x), this could lead to the
deployment of an unrealizable model (e.g., by overestimating
the throughput or underestimating the latency of the pipeline).

5.5 Microbenchmarks

In this section, we evaluate CATO’s robustness to varying
search space sizes and its sensitivity with respect to its BO
initialization and damping coefficient hyperparameters.
Varying Maximum Connection Depth. Previously, we
showed that CATO is highly effective across both large (67)
and small (6) candidate feature sets, but limited the search
space to a maximum connection depth of 50 packets. Here,
we explore the impact of maximum connection depth and
the size of the search space on CATO’s ability to identify
Pareto-optimal feature representations.

In general, limiting the search space inherently restricts
the number of possible feature representations, potentially
compromising the quality of the estimated Pareto front. Con-
versely, expanding the search space offers a richer set of fea-
ture representations, but makes locating the true Pareto front
more challenging. Table 3 shows CATO’s performance across
different maximum packet depths for iot-class using the
full 67 candidate features. Since it is difficult to compare HVI
across configurations without a ground truth, we report met-
rics for the estimated Pareto-optimal representations with the
highest F1 score and lowest overall execution time.

We can see that restricting the packet depth to very small
values (e.g., less than 5) limits CATO’s ability to find a so-

Max Highest F1 Score Lowest Execution Time
Depth N n F1 score Time (µs) n F1 score Time (µs)

3 3 0.959 1.37 1 0.310 0.2
5 4 0.983 1.30 1 0.520 0.26

10 7 0.994 2.04 1 0.520 0.26
25 7 0.989 2.61 1 0.520 0.26
50 7 0.993 2.10 1 0.461 0.27

100 10 0.990 3.01 1 0.005 0.24
∞ 42k 0.984 28.2 52k 0.944 16.5

Table 3: Estimated Pareto-optimal solutions with the highest
F1 score and lowest execution time for different maximum
packet depths. CATO is able to identify high quality solutions,
even when expanding the maximum connection depth.

0 10 20 30 40 50
Number of iterations

0.5

0.6

0.7

0.8

0.9

1.0

HV
I δ = 0

δ = 0.2
δ = 0.4
δ = 0.6
δ = 0.8
δ = 1

(a) Damping coefficient δ.

0 10 20 30 40 50
Number of iterations

0.5

0.6

0.7

0.8

0.9

1.0

HV
I

init: 1
init: 2
init: 3
init: 5
init: 10

(b) BO initialization samples.

Figure 10: Effects of varying the damping coefficient and the
number of samples used to initialize the BO surrogate model.

lution that yields an F1 score above 0.99, likely because not
many feature sets can achieve such high model performance
using only the first few packets in a flow. However, if we
expand the search space to include features extracted from up
to the first 10–100 packets, CATO is still able to identify fea-
ture sets that only need the first 7–10 packets to achieve good
model performance despite the larger maximum packet depth.
However, if the search space over packet depth is unbounded,
CATO struggles converge to a feature representation with low
cost since the Optimizer has too much flexibility to explore
any value between 1 and the maximum number of packets
across all flows in the training set. These results reinforce that
concurrently searching over different features and when to
collect those features, rather than predefining a fixed connec-
tion depth, can lead to more optimal traffic analysis pipelines.
CATO can identify highly efficient and predictive feature rep-
resentations within a wide range of connection depths, even
without prior knowledge of its optimum.
Sensitivity Analysis. We analyze the sensitivity of CATO
with respect to its hyperparameters. We again use the smaller
candidate feature set to measure HVI against the true Pareto
front with a worst-case reference point. Figure 10a shows the
impact of varying the damping coefficient δ between 0 and 1.
Recall that δ = 0 represents a prior probability equivalent to
the normalized mutual information, while δ = 1 represents
uniform priors for each feature. Using uniform priors per-
forms the worst with an HVI of 0.93 after 50 iterations. With

less damping, CATO converges faster in earlier iterations.
We find that a δ = 0.4 results in the highest performance at
50 iterations, while δ = 0 also performs well overall.

In Figure 10b, we vary the number of samples used to
initialize the BO surrogate model. Initialization samples are
chosen at random but weighted according to the priors. We
observe little difference in CATO’s performance for small
initialization values, but find that initializing with just 1 point
empirically results in the highest HVI after 50 iterations. We
choose to go with a more conventional value for BO [35], and
choose 3 initialization samples by default.

6 Related Work

Efficient Inference. Several systems have been proposed
for efficient traffic analysis inference. However, many of these
efforts focus only on increasing the speed of the final model
inference stage, rather than that of the end-to-end serving
pipeline [22, 43, 69]. Such approaches overlook the effects of
the packet capture and feature extraction stages, both of which
CATO considers in its end-to-end optimization. AC-DC [34]
and pForest [16] are similar in that they explicitly consider the
preprocessing costs of extracting features. AC-DC performs
inference under dynamic memory constraints while pForest
targets programmable hardware. Both of these differ from
CATO in that they generate pools of models and dynamically
switch between them based on inference requirements.

There is a growing body of research that proposes the use
of programmable hardware for traffic analysis [9, 16, 33, 36,
59, 64, 67, 68, 74, 75, 80, 82]. For example, N3IC [64] uses
binary neural networks to implement traffic analysis models
on FPGAs and SmartNICs, while BoS [75] enables RNN in-
ference on programmable switches. These approaches focus
on the trade-off between accuracy and efficiency of the model
under the constraints of dataplane hardware, such as limited
memory and lack of support for floating-point operations,
multiplications, and loops. Our work, by contrast, focuses on
the choice of traffic representation—spanning both feature
selection and connection depth—to co-optimize systems per-
formance and predictive accuracy. CATO can complement
hardware-focused techniques: by applying the CATO Opti-
mizer and extending our Profiler implementation to target pro-
grammable hardware, we can identify traffic representations
that are cheaper to collect while also validating the end-to-end
performance of the hardware pipeline. This combined strategy
can further boost the efficiency and predictive performance
of ML-based traffic analysis, which we leave for future work.
Balancing Systems and Model Performance. There ex-
ist general-purpose serving frameworks that aim to balance
efficiency with model performance through techniques like
caching [20], adaptive model selection [20, 58], autoscal-
ing [19, 58, 78], and scheduling for resource-quality trade-
offs [42, 79]. Unlike CATO, these frameworks primarily fo-

cus on optimizing resource allocation and are less suited
for real-time traffic analysis, where even small inefficiencies
in end-to-end systems performance can cause not just de-
layed results, but also potentially invalidate the model due
to packet loss. Additionally, CATO explicitly considers the
optimal point in the flow (i.e., connection depth) for making
predictions, which previous frameworks do not address. Traf-
fic Refinery [14] considers joint optimization of model and
system performance for ML-based network traffic analysis.
However, it relies on manual exploration of data representa-
tions and focuses only on individual feature costs, whereas
CATO performs automated end-to-end optimization of the
entire analysis pipeline.
Bayesian Optimization for Traffic Analysis. Bayesian
Optimization is a popular technique for compiler optimiza-
tion [28], FPGA design [52], and hyperparameter tuning [66,
70], but has seen limited use in optimizing ML-based traffic
analysis pipelines. Most similar is Homunculus [68], which
uses Bayesian optimization to generate ML models for data-
center network applications under the resource constraints of
data-plane hardware. Homunculus optimizes over different
model architectures and their hyperparameters, but is single-
objective and does not consider the effects of different feature
sets, connection depths, and their associated systems costs.
CATO, on the other hand, uses multi-objective BO over the
entire feature representation space to simultaneously optimize
serving efficiency and predictive performance.

7 Conclusion

In this work, we introduced CATO, a framework for end-
to-end optimization of ML-based traffic analysis pipelines.
By leveraging multi-objective Bayesian optimization coupled
with a realistic pipeline generator and profiler, CATO effi-
ciently builds and validates serving pipelines that balance both
model accuracy and systems performance. Our evaluations
on live traffic and offline traces showed that CATO can im-
prove end-to-end inference latency, throughput, and pipeline
execution time across diverse traffic analysis tasks, while also
maintaining or enhancing model performance. Future work
includes broader model selection strategies and extending per-
formance profiling across heterogeneous serving hardware.

Acknowledgements

We thank our shepherd Zhizhen Zhong as well as Tina Wu,
Thea Rossman, Qizheng Zhang, Carl Hvarfner, Luigi Nardi,
and the anonymous reviewers for their helpful feedback.
We thank the Stanford networking team, including Andrej
Krevl, Johan van Reijendam, and Will Johnson. This work
was supported in part by a Sloan Research Fellowship, the
National Science Foundation under Grant Numbers #2319080
and #2124424, the ANR Project No ANR-21-CE94-0001-01

(MINT), and gifts from Google, Inc., Cisco Systems, Inc.,
and Comcast Corporation. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the NSF or other funding organizations.

References
[1] Smartcore. https://smartcorelib.org/, 2023.

[2] Web application firewall documentation. https://learn.microsoft.
com/en-us/azure/web-application-firewall/, 2023.

[3] Zeek. https://zeek.org/, 2023.

[4] Mahmoud Abbasi, Amin Shahraki, and Amir Taherkordi. Deep learning
for network traffic monitoring and analysis (NTMA): A survey. In
Computer Communications, 2021.

[5] Hasan Faik Alan and Jasleen Kaur. Can android applications be identi-
fied using only TCP/IP headers of their launch time traffic? In ACM
Conference on Security and Privacy in Wireless Networks, 2016.

[6] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer.
Permutation importance: A corrected feature importance measure. In
Bioinformatics, 2010.

[7] Zied Aouini and Adrian Pekar. NFStream: A flexible network data
analysis framework. In Computer Networks, 2022.

[8] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan,
Ion Stoica, and Hui Zhang. Developing a predictive model of quality
of experience for internet video. In ACM Special Interest Group on
Data Communication (SIGCOMM), 2013.

[9] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello,
Fernando M. V. Ramos, and André Madeira. Flowlens: Enabling
efficient flow classification for ml-based network security applications.
In Network and Distributed Systems Security Symposium (NDSS), 2021.

[10] Laurent Bernaille, Renata Teixeira, Ismael Akodjenou, Augustin Soule,
and Kavé Salamatian. Traffic classification on the fly. In ACM SIG-
COMM Computer Communication Review, 2006.

[11] Laurent Bernaille, Renata Teixeira, and Kavé Salamatian. Early ap-
plication identification. In International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), 2006.

[12] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ay-
oubi, Nashid Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. A
comprehensive survey on machine learning for networking: evolution,
applications and research opportunities. In Journal of Internet Services
and Applications, 2018.

[13] Xavier Bouthillier and Gaël Varoquaux. Survey of machine-learning ex-
perimental methods at NeurIPS2019 and ICLR2020. Research Report,
Inria Saclay Ile de France, 2020.

[14] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Hyojoon Kim, Renata
Teixeira, and Nick Feamster. Traffic refinery: Cost-aware data represen-
tation for machine learning on network traffic. In ACM Measurement
and Analysis of Computing Systems, 2021.

[15] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins,
Renata Teixeira, and Nick Feamster. Inferring streaming video quality
from encrypted traffic: Practical models and deployment experience.
In ACM Measurement and Analysis of Computing Systems, 2019.

[16] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias
Bühler, and Laurent Vanbever. pforest: In-network inference with
random forests. arXiv preprint arXiv:1909.05680v2, 2022.

[17] Roberto Calandra, Nakul Gopalan, André Seyfarth, Jan Peters, and
Marc Peter Deisenroth. Bayesian gait optimization for bipedal lo-
comotion. In International Conference on Learning and Intelligent
Optimization (LION), 2014.

https://smartcorelib.org/
https://learn.microsoft.com/en-us/azure/web-application-firewall/
https://learn.microsoft.com/en-us/azure/web-application-firewall/
https://zeek.org/

[18] Briang Chang, Kausik Subramanian, Loris D’Antoni, and Aditya
Akella. Learned load balancing. In International Conference on Dis-
tributed Computing and Networking (ICDCN), 2023.

[19] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Sto-
ica, Joseph Gonzalez, and Alexey Tumanov. Inferline: Latency-aware
provisioning and scaling for prediction serving pipelines. In ACM
Symposium on Cloud Computing, 2020.

[20] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online pre-
diction serving system. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[21] Alberto Dainotti, Antonio Pescapé, and Carlo Sansone. Early classifi-
cation of network traffic through multi-classification. In International
Workshop on Traffic Monitoring and Analysis (TMA), 2011.

[22] Kayathri Devi Devprasad, Sukumar Ramanujam, and Suresh Babu Ra-
jendran. Context adaptive ensemble classification mechanism with
multi-criteria decision making for network intrusion detection. Con-
currency and Computation: Practice and Experience, 2022.

[23] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam
Mamun, and Ali A. Ghorbani. Characterization of encrypted and VPN
traffic using time-related features. In International Conference on
Information Systems Security and Privacy (ICISSP), 2016.

[24] Peter I. Frazier. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[25] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime robust malicious
traffic detection via frequency domain analysis. In ACM SIGSAC
Conference on Computer and Communication Security (CCS), 2021.

[26] Craig Gutterman, Katherine Guo, Sarthak Arora, Xiaoyang Wang, Les
Wu, Ethan Katz-Bassett, and Gil Zussman. Requet: Real-time QoE
detection for encrypted youtube traffic. In ACM Transactions on Multi-
media Computing, Communications, 2020.

[27] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik.
Gene selection for cancer classification using support vector machines.
In Machine Learning, 2002.

[28] Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia
Hsu, Adel Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun,
and Luigi Nardi. BaCO: A fast and portable Bayesian compiler opti-
mization framework. In ACM Architectural Support for Programming
Languages and Operating Systems, 2023.

[29] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. New
directions in automated traffic analysis. In ACM Conference on Com-
puter and Communication Security (CCS), 2021.

[30] Nen-Fu Huang, Gin-Yuan Jai, Han-Chieh Chao, Yih-Jou Tzang, and
Hong-Yi Chang. Application traffic classification at the early stage by
characterizing application rounds. In Information Sciences, 2013.

[31] Johann Hugon, Gaetan Nodet, Anthony Busson, and Francesco
Bronzino. Towards adaptive ml traffic processing systems. In Proceed-
ings of the on CoNEXT Student Workshop 2023, 2023.

[32] Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter,
and Luigi Nardi. πBO: Augmenting acquisition functions with user
beliefs for Bayesian optimization. In International Conference on
Learning Representations (ICLR), 2022.

[33] Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawar-
malani. Leo: Online ml-based traffic classification at multi-terabit
line rate. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2024.

[34] Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt,
and Nick Feamster. AC-DC: Adaptive ensemble classification for
network traffic identification. arXiv preprint arXiv:2302.11718, 2023.

[35] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient
global optimization of expensive black-box functions. In Journal of
Global Optimization, 1998.

[36] Radhakrishna Kamath and Krishna M. Sivalingam. Machine learning
based flow classification in DCNs using P4 switches. In International
Conference on Computer Communications and Networks, 2015.

[37] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Falout-
sos. BLINC: Multilevel traffic classification in the dark. In ACM
Special Interest Group on Data Communication (SIGCOMM), 2005.

[38] Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimiza-
tion by simulated annealing. In Science, 1983.

[39] Vengatanathan Krishnamoorthi, Niklas Carlsson, Emir Halepovic, and
Eric Petajan. BUFFEST: Predicting buffer conditions and real-time re-
quirements of HTTP(S) adaptive streaming clients. In ACM Multimedia
Systems Conference, 2017.

[40] Jong-Hyouk Lee and Kamal Singh. SwitchTree: In-network computing
and traffic analyses with random forests. In Neural Computing and
Applications, 2020.

[41] Miqing Li and Xin Yao. Quality evaluation of solution sets in multiob-
jective optimisation: A survey. In ACM Computing Surveys, 2019.

[42] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. Alpaserve: Statistical multiplexing with model parallelism for
deep learning serving. USENIX Symposium on Operating Systems
Design and Implementation, 2023.

[43] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural packet classifi-
cation. In SIGCOMM, 2019.

[44] Yingqiu Liu, Wei Li, and Yunchun Li. Network traffic classification
using K-means clustering. In International Multi-Symposiums on
Computer and Computational Sciences, 2007.

[45] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and
Jaime Lloret. Network traffic classifier with convolutional and recurrent
neural networks for internet of things. In IEEE Access, 2017.

[46] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hos-
sein Zade, and Mohammdsadegh Saberian. Deep packet: A novel
approach for encrypted traffic classification using deep learning. Soft
Computing, 2020.

[47] Tarun Mangla, Emir Halepovic, Mostafa Ammar, and Ellen Zegura.
Using session modeling to estimate HTTP-based video QoE metrics
from encrypted network traffic. In IEEE Transactions on Network and
Service Management, 2019.

[48] M. Hammad Mazhar and Zubair Shafiq. Real-time video quality of
experience monitoring for HTTPS and QUIC. In IEEE International
Conference on Computer Communications, 2018.

[49] M. Hammad Mazhar and Zubair Shafiq. Real-time video quality of
experience monitoring for HTTPS and QUIC. In IEEE Conference on
Computer Communications (INFOCOM), 2018.

[50] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, Ahmad-Reza
Sadeghi, N. Asokan, and Sasu Tarkoma. IoT sentinel: Automated
device-type identification for security enforcement in IoT. In Interna-
tional Conference on Distributed Computing Systems, 2017.

[51] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for
use in flow-based classification. Technical report, 2005.

[52] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. Hy-
perMapper: a practical design space exploration framework. In IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2019.

[53] Thuy T.T. Nguyen and Grenville Armitage. A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities. In IEEE Communications Surveys & Tutorials, 2008.

[54] Lizhi Peng, Bo Yang, and Yuehui Chen. Effective packet number for
early stage internet traffic identification. In Neurocomputing, 2015.

[55] Julien Piet, Dubem Nwoji, and Vern Paxson. GGFAST: Automat-
ing generation of flexible network traffic classifiers. In ACM Special
Interest Group on Data Communication (SIGCOMM), 2023.

[56] Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. Large-scale mobile
app identification using deep learning. In IEEE Access, 2019.

[57] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem,
and Wouter Joosen. Automated website fingerprinting through deep
learning. arXiv preprint arXiv:1708.06376, 2017.

[58] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated model-less inference serving. In
USENIX Annual Technical Conference (USENIX ATC), 2021.

[59] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. Can the
network be the ai accelerator? In Morning Workshop on In-Network
Computing, 2018.

[60] Gabriel Gómez Sena and Pablo Belzarena. Early traffic classifica-
tion using support vector machines. In International Latin American
Networking Conference (LANC), 2009.

[61] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and
Nando de Freitas. Taking the human out of the loop: A review of
bayesian optimization. In Proceedings of IEEE, vol. 104, no. 1, 2016.

[62] Tal Shapira and Yuval Shavitt. FlowPic: A generic representation for
encrypted traffic classification and applications identification. In IEEE
Transactions on Network and Service Management, 2021.

[63] Jayveer Singh and Manisha Nene. A survey on machine learning
techniques for intrusion detection systems. In Intl. Journal of Advanced
Research in Computer and Communication Engineering, 2013.

[64] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad
Malekzadeh, Gianni Antichi, Paolo Costa, Hamed Haddadi, and
Roberto Bifulco. Re-architecting traffic analysis with neural network
interface cards. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2022.

[65] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam
Radford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman.
Classifying IoT devices in smart environments using network traffic
characteristics. In IEEE Transactions on Mobile Computing, 2019.

[66] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian
optimization of machine learning algorithms. In International Confer-
ence on Advances in Neural Information Processing Systems, 2012.

[67] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. Taurus: A data plane architecture for per-packet
ML. In ACM Architectural Support for Programming Languages and
Operating Systems, 2022.

[68] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and
Kunle Olukotun. Homunculus: Auto-generating efficient data-plane
ML pipelines for datacenter networks. In ACM Architectural Support
for Programming Languages and Operating Systems, 2023.

[69] Da Tong, Yun R Qu, and Viktor K Prasanna. High-throughput traffic
classification on multi-core processors. In IEEE International Confer-
ence on High Performance Switching and Routing, 2014.

[70] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laak-
sonen, Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior
to random search for machine learning hyperparameter tuning: Analy-
sis of the black-box optimization challenge 2020. In Proceedings of
the NeurIPS 2020 Competition and Demonstration Track,, 2021.

[71] Jorge R. Vergara and Pablo A. Estévez. A review of feature selection
methods based on mutual information. In Neural Computing and
Applications, 2014.

[72] Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Durumeric.
Retina: Analyzing 100 GbE traffic on commodity hardware. In ACM
Special Interest Group on Data Communication (SIGCOMM), 2022.

[73] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng.
Malware traffic classification using convolutional neural network for
representation learning. In International Conference on Information
Networking, 2017.

[74] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine
learning?: Toward in-network classification. In ACM Workshop on Hot
Topics in Networks, 2019.

[75] Jinzhu Yan, Haotian Xu, Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, and
Jianping Wu. Brain-on-switch: Towards advanced intelligent network
data plane via nn-driven traffic analysis at line-speed. In USENIX
Symposium on Networked Systems Design and Implementation, 2024.

[76] Hao Yang, Qin He, Zhenyan Liu, and Qian Zhang. Malicious encryp-
tion traffic detection based on NLP. In Security and Communication
Networks, 2021.

[77] Kun Yang, Nick Feamster, and Samory Kpotufe. Feature ex-
traction for novelty detection in network traffic. arXiv preprint
arXiv:2006.16993v2, 2021.

[78] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. MArk: Ex-
ploiting cloud services for cost-effective, SLO-aware machine learning
inference serving. In USENIX Annual Technical Conference, 2019.

[79] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J. Freedman. Live video analytics at
scale with approximation and delay-tolerance. In USENIX Symposium
on Networked Systems Design and Implementation, 2017.

[80] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensous-
sane, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. Automat-
ing in-network machine learning. arXiv preprint arXiv:2205.08824v1,
2022.

[81] Weiping Zheng, Jianhao Zhong, Qizhi Zhang, and Gansen Zhao. MTT:
An efficient model for encrypted network traffic classification using
multi-task transformer. Applied Intelligence, 2022.

[82] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. An
efficient design of intelligent network data plane. In USENIX Security
Symposium, 2023.

A Candidate Features

Table 4 lists the set of candidate features used in our eval-
uations. We aggregate common network flow features used
throughout networking research for ML-based traffic analy-
sis [3, 15, 16, 51, 64, 68, 72]. These are also commonly sup-
ported by open source tools, and are not specific to any par-
ticular use case. However, for privacy reasons related to our
live traffic experiments, we restrict these to various types of
summary statistics to avoid saving packet payloads to disk.

B Dataset Collection

All experiments with live traffic are performed on a server
running Ubuntu 20.04, with a dual Xeon Gold 6248R 3GHz
CPU, 384 GB of memory, and a 100GbE Mellanox ConnectX-
5 NIC. All experiments using offline datasets are performed
on a server with a dual Xeon Gold 6154 3GHz CPU and
384 GB of memory, running Ubuntu 20.04.
Web Application Classification. For app-class, we clas-
sify the following applications: Netflix, Twitch, Zoom, Mi-
crosoft Teams, Facebook, Twitter, or “other.” Connections
are labeled using the SNI from the TLS handshake, and only
statistical features listed in Table 4 are collected (see Ap-
pendix H for ethical considerations involving live traffic). We

Feature Description In mini
cand. set

dur total duration yes
proto transport layer protocol no
s_port src port no
d_port dst port no
s_load src → dst bps yes
d_load dst → src bps no
s_pkt_cnt src → dst packet count yes
d_pkt_cnt dst → src packet count no
tcp_rtt time between SYN and ACK no
syn_ack time between SYN and SYN/ACK no
ack_dat time between SYN/ACK and ACK no
s_bytes_sum src → dst total bytes yes
d_bytes_sum dst → src total bytes no
s_bytes_mean src → dst mean packet size yes
d_bytes_mean dst → src mean packet size no
s_bytes_min src → dst min packet size no
d_bytes_min dst → src min packet size no
s_bytes_max src → dst max packet size no
d_bytes_max dst → src max packet size no
s_bytes_med src → dst median packet size no
d_bytes_med dst → src median packet size no
s_bytes_std src → dst std dev packet size no
d_bytes_std dst → src std dev packet size no
s_iat_sum src → dst total packet inter-arrival time no
d_iat_sum dst → src total packet inter-arrival time no
s_iat_mean src → dst mean packet inter-arrival time yes
d_iat_mean dst → src mean packet inter-arrival time no
s_iat_min src → dst min packet inter-arrival time no
d_iat_min dst → src min packet inter-arrival time no
s_iat_max src → dst max packet inter-arrival time no
d_iat_max dst → src max packet inter-arrival time no
s_iat_med src → dst median packet inter-arrival time no
d_iat_med dst → src median packet inter-arrival time no
s_iat_std src → dst std dev packet inter-arrival time no
d_iat_std dst → src std dev packet inter-arrival time no
s_winsize_sum src → dst sum of TCP window sizes no
d_winsize_sum dst → src sum of TCP window sizes no
s_winsize_mean src → dst mean TCP window size no
d_winsize_mean dst → src mean TCP window size no
s_winsize_min src → dst min TCP window size no
d_winsize_min dst → src min TCP window size no
s_winsize_max src → dst max TCP window size no
d_winsize_max dst → src max TCP window size no
s_winsize_med src → dst med TCP window size no
d_winsize_med dst → src med TCP window size no
s_winsize_std src → dst std dev TCP window size no
d_winsize_std dst → src std dev TCP window size no
s_ttl_sum src → dst sum of IP TTL values no
d_ttl_sum dst → dst sum of IP TTL values no
s_ttl_mean src → dst mean TTL no
d_ttl_mean dst → src mean TTL no
s_ttl_min src → dst min TTL no
d_ttl_min dst → src min TTL no
s_ttl_max src → dst max TTL no
d_ttl_max dst → src max TTL no
s_ttl_med src → dst median TTL no
d_ttl_med dst → src median TTL no
s_ttl_std src → dst std dev TTL no
d_ttl_std dst → src std dev TTL no
cwr_cnt number of packets with CWR flag set no
ece_cnt number of packets with ECE flag set no
urg_cnt number of packets with URG flag set no
ack_cnt number of packets with ACK flag set no
psh_cnt number of packets with PSH flag set no
rst_cnt number of packets with RST flag set no
syn_cnt number of packets with SYN flag set no
fin_cnt number of packets with FIN flag set no

Table 4: Candidate feature set F containing 67 commonly
used flow features. We indicate the six that are used in the
smaller candidate set for ground truth analyses.

use Retina [72] for data collection, which we run for 30 sec-
onds with 12.5% flow sampling, and an additional 10 minutes
with 50% flow sampling filtered on the target applications to
help collect a more balanced dataset. Flow sampling reduces
the effective ingress network throughput while maintaining
per-connection consistency, and is done entirely in the NIC
using hardware filters [72]. We avoid collecting at full net-
work throughput to ensure that no packets are dropped in the
data collection phase. In total, we collected 2M samples of
connection data over 50 different packet depths.
IoT Device Recognition. For iot-class, we classify one
of 28 IoT device types using the UNSW IoT dataset [65].
We use the September 2016 traces in our evaluations, which
include approximately 134K connections. Models are trained
and evaluated using data from eight days of packet traces.
Video Startup Delay Inference. We use the dataset col-
lected by Bronzino et al. [15] for vid-start, focusing ex-
clusively on YouTube traffic, where each video session con-
sists of a single TCP connection. The final dataset comprises
4,287 connections, capturing a wide range of startup delay
times. Delay times range from 315 ms to 54 seconds at P99,
with the maximum observed delay being 14 minutes.

C Model Training

For DT and RF model training, we use scikit-learn’s Deci-
sionTreeClassifier and RandomForestClassifier with default
parameters and tune the maximum tree depth from the set
{3, 5, 10, 15, 20}. The RandomForestClassifier is configured
with 100 estimators. To integrate with the Rust-based packet
capture and feature extraction stages, the tuned DT and RF
models are retrained in Rust using the SmartCore [1] library.

DNN hyperparameters are tuned over the following values:
batch size {16, 32, 64}, learning rate {0.001, 0.01}, dropout
rate {0.2, 0.4, 0.6, 0.8}, L2 regularization {0.1, 0.5}, and num-
ber of neurons in each hidden layer {4, 8, 16}.

D Measurement Details

End-to-End Inference Latency. We implement two ver-
sions of inference latency measurement, depending on the use
case. For app-class, we record the arrival timestamp of the
SYN packet, and subtract it from the timestamp of the final
prediction output by the model. Since we do not have access
to live traffic from the iot-class dataset, we compute the
end-to-end inference latency by taking the sum of the pipeline
execution time, model inference time, and packet inter-arrival
times up to the specified connection depth. The inter-arrival
times are calculated from packet timestamps in the traces.
Zero-Loss Throughput. Since we are unable to control the
input traffic rate on our live network, we choose to restrict
our serving pipelines to a single core to differentiate the per-
formance of each optimization method. This ensures that we

can find an upper bound on the throughput since no solu-
tion will be able to saturate the input traffic rate. To measure
the zero-loss throughput, we leverage Retina’s flow sampling
capabilities by starting at the full traffic rate and slowly de-
creasing the percentage of flows randomly dropped by the
NIC until we observe zero packet loss for 30 seconds. We
repeat this for multiple trials and take the average zero-loss
throughput sustained by the traffic analysis pipeline.
Execution Time. Pipeline execution time is a measure of
total CPU time spent in the serving pipeline, excluding time
spent waiting for packets to arrive. We measure this by insert-
ing calls to query the Read Time-Stamp Counter register at
the start and end of each packet processing step and the model
inference stage.

E Optimization Wall-Clock Time

Wall-clock time depends heavily on the application use-case,
model type, number of samples explored, and the concrete
definitions of cost(x) and perf(x). For reference, Table 5
reports the breakdown in time elapsed for CATO to compute
the Pareto fronts depicted in Figure 5d and Figure 7, which tar-
get different use cases and system cost metrics. As expected,
execution time is mostly consumed by the Profiler, which,
on each iteration, generates a fresh serving pipeline, trains
and evaluates the model, and measures the end-to-end sys-
tems costs. We deem this a worthwhile trade-off because the
time spent by the Profiler to validate the systems cost of each
sampled solution ensures that the resulting Pareto-optimal
pipeline can meet real-time performance requirements. The
BO-guided sampling that determines the next feature repre-
sentation for the Profiler to evaluate adds between 1.4 and
55 seconds per iteration depending on the search space.

F Reproducing Traffic Refinery

We reproduce key components of the Traffic Refinery [14]
framework for evaluation. Traffic Refinery defines several
feature classes that contain features commonly used in ML-
based traffic analysis. Specifically, we replicate the Packet-
Counter (PC), PacketTiming (PT), and TCPCounter (TC)
feature classes using subsets of our candidate feature set. PC
includes all packet and byte counters, PT includes all packet
inter-arrival statistics, and TC includes all flag counters, win-
dow size statistics, and RTT. We simulate using Traffic Re-
finery by manually aggregating feature classes, varying the
packet depths, and measuring the predictive performance and
pipeline execution time using CATO’s Profiler. While Traffic
Refinery also has the ability to profile state and storage costs,
we focus on execution time in our evaluation since it is a
shared cost metric in both frameworks.

Use case / # cand. features
Systems cost metric:

app-class / 67
zero-loss throughput

iot-class / 6
processing time

Preprocessing 22.4 s 4.1 s
Opt. Iteration (50×)

BO sample 55.5 s 1.4 s
Pipeline generation 53.1 s 46.5 s
Measure perf(x) 29.6 s 26.4 s
Measure cost(x) 546.7 s 70.3 s

Total elapsed 9.5 h 2 h

Table 5: CATO optimization wall-clock times. BO is well-
suited for expensive-to-evaluate objective functions, such as
perf(x) and cost(x).

G Simulated Annealing Details

We describe our simulated annealing [38] implementation
SIMA from Section 5.3. SIMA starts with a random feature
representation x as the current “best” point. On each iteration
i, it samples a neighbor point xi and measures cost(xi) and
perf(xi). Neighbors are sampled by randomly perturbing ei-
ther the feature set or the packet depth with equal probability:

• Feature set perturbation: Add, remove, or replace a feature
at random.

• Packet depth perturbation: Move up to some maximum
step size away from the current packet depth, with the
maximum step size decreasing linearly from the maxi-
mum packet depth as more samples are explored. This
allows for more exploration earlier in the search.

Since our optimization is multi-objective, we adjust the stan-
dard simulated annealing neighbor acceptance criterion as
follows: If the neighboring point dominates the current point
across both objectives, it is accepted as the new current point.
Otherwise, it is still accepted with probability P(x,xi,Ti) =
exp(f (x)− f (xi))/Ti, where f (x) is an equal weighted com-
bination of perf(x) and cost(x), and Ti is the temperature at
iteration i. Consistent with simulated annealing algorithms,
the temperature gradually decreases as the search space is ex-
plored. This mechanism allows for non-dominating solutions
to still be accepted with higher probability at the beginning
of the search process, preventing SIMA from getting trapped
in local minima. We empirically tune SIMA with different
initial temperatures and cooling schedules, and choose T0 = 1
and Ti+1 = 0.99Ti.

Figure 8 (Section 5.3) reveals that while SIMA is less
sample efficient than CATO, it is generally more efficient
than RAND. However, RAND catches up after approximately
1500 sample explorations, likely due to SIMA’s reduced abil-
ity to explore new feature representations as the temperature
decreases.

H Ethical Considerations

As part of our experiments with high-speed network traffic,
we evaluated the performance of models against live campus

network traffic. The candidate flow features we use included
only aggregate flow statistics and an application name derived
from the SNI field in TLS handshakes. We never captured or
analyzed client IP addresses, viewed any individual flows or
connection records, stored any packets to disk, or investigated
human behavior; our IRB has ruled that this type of analysis
does not constitute human subjects research. Nonetheless, we
took steps to ensure the security and privacy of campus users.
All live traffic experiments were isolated to a single hardened
server that was deployed in partnership with our campus
networking and security teams in order to not increase the
attack surface for users.

	Introduction
	Background and Motivation
	ML-Based Traffic Analysis
	Challenge of End-to-End Optimization

	Cost-Aware Traffic Analysis Optimization
	Problem Definition
	CATO Overview
	The CATO Optimizer
	The CATO Profiler

	Implementation of CATO
	Evaluation
	Datasets and Testbeds
	Model Serving Performance
	Optimizer Efficiency
	Ablation Study of the Profiler
	Microbenchmarks

	Related Work
	Conclusion
	Candidate Features
	Dataset Collection
	Model Training
	Measurement Details
	Optimization Wall-Clock Time
	Reproducing Traffic Refinery
	Simulated Annealing Details
	Ethical Considerations

