
UNDERSTANDING MODEL DRIFT IN A LARGE CELLULAR NETWORK

Shinan Liu 1 Francesco Bronzino 2 Paul Schmitt 3 Arjun Nitin Bhagoji 1 Nick Feamster 1

Hector Garcia Crespo 4 Timothy Coyle 4 Brian Ward 4

ABSTRACT
Operational networks are increasingly using machine learning models for a variety of tasks, including detecting
anomalies, inferring application performance, and forecasting demand. Accurate models are important, yet
accuracy can degrade over time due to model drift, whereby either the characteristics of the data change over
time (data drift) or the relationship between the features and the target change over time (concept drift). Drift
occurs in operational networks for a variety of reasons, ranging from software upgrades to seasonality to changes
in user behavior. This paper presents an initial exploration into model drift in a large cellular network in the
United States for a major metropolitan area in the context of demand forecasting. We taxonomize data drift and
decompose concept drift based on frequency. Furthermore, we identify the sources of concept drift for forecasting
downlink volume: lower traffic volumes, and higher speeds tend to exhibit more concept drift; and the features
that contribute most to concept drift of volume forecasting are User Equipment (UE) downlink packets, UE uplink
packets, and Real-time Transport Protocol (RTP) received packets.

1 INTRODUCTION

Network operators are increasingly relying on machine
learning models to perform a variety of network operations
tasks, including anomaly detection (Shon & Moon, 2007;
Shon et al., 2005), performance inference (Futuriom, ac-
cessed August, 2021) and diagnosis, and forecasting (Mei
et al., 2020; Chinchali et al., 2018). Yet, even if machine
learning models are accurate for specific network man-
agement tasks on a particular set of test data, deploying
and maintaining the models can prove challenging in prac-
tice (Sommer & Paxson, 2010). A significant operational
challenge is model drift, whereby a model that is initially
accurate at a particular point in time becomes less accurate
over time—either due to a sudden change, periodic shifts,
or gradual drift over time. Previous work in applying ma-
chine learning models to network management tasks has
generally trained models on fixed datasets (Sinclair et al.,
1999; Dong & Wang, 2016; Shon & Moon, 2007; Shon
et al., 2005; Ayoubi et al., 2018; Mei et al., 2020; Chinchali
et al., 2018), demonstrating the ability to predict various
network properties or instances at fixed points in time. Yet,
a model that performs well at a particular point in time does
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not necessarily perform well on future data.

Models can become less accurate at predicting target vari-
ables for many reasons. One cause is a sudden, drastic
change to the environment. For example, the installation of
new equipment, a software upgrade, or a sudden change in
traffic patterns or demands can cause models to suddenly
become inaccurate. One notable instance that exhibited
such a sudden shift was the COVID-19 pandemic, an exoge-
nous shock that resulted in significant changes to behavior
patterns (Lutu et al., 2020) and traffic demands (Liu et al.,
2021). Another characteristic is periodic change. For exam-
ple, one phenomena that we observe is a drift in model accu-
racy with a seven-day period; diurnal and periodic patterns
in network traffic are, of course, both well-documented and
relatively well-understood. A new contribution in this paper,
however, is to demonstrate that machine learning models
also exhibit similar patterns with respect to accuracy.

Model drift is also a relatively well-understood phenomenon
in machine learning and has been studied in the context of
many other prediction problems (Schlimmer & Granger,
1986; Lu et al., 2018; Gama et al., 2014). To our knowledge,
this paper is the first to study drift in the context of cellular
networks. We characterize model drift in the context of a
large cellular network, exploring drift for a variety of cel-
lular key performance indicators (KPIs) using nearly three
and a half years of data from a major metropolitan area in
the United States. Data drift refers to changes in the dis-
tribution of features that are model inputs. Concept drift
refers to changes of relationships between model inputs (i.e.,
features) and the output (i.e., target prediction). In cellular
networks, concept drift introduces unique challenges: in
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contrast to tasks such as image or text classification, where
the semantics of prediction occurs on a fixed object and
characteristics of the features change relatively slowly over
time (Fdez-Riverola et al., 2007; Žliobaitė, 2010; Gama
et al., 2014), predictions of network characteristics occur
continuously over time, and predictions are occurring within
the context of a system that changes over time due to both
gradual evolution and exogenous shocks. Moreover, dy-
namic signal interference due to environment changes of-
ten occur in wireless networks (Zheng et al., 2014), a phe-
nomenon that adds another layer of complexity and novelty
beyond previous studies of drift.

Both data drift and concept drift are important to character-
ize. While understanding concept drift has obvious impor-
tance since it relates to model accuracy, understanding data
drift is important because it can help explain concept drift.
Although this paper does not go so far as to build a mech-
anisms to detect or mitigate model drift, our analysis lays
the groundwork for techniques that could help to develop
detecting and mitigation strategies in the future. We make
contributions in three areas.

First, we characterize data drift from the input KPIs in
a large cellular network. 1 Second, we decompose con-
cept drift in a large cellular network based on frequecny
components of time-series signals of accuracy. Third, we
apply machine learning-based analysis, including contribut-
ing factor explanations and feature importance movements
to illuminate the causes of model drift.

2 CONTEXT

In this section, we focus on the dataset and the problem
setting. We start with a description of our dataset and then
discuss our modelling goal—forecasting target KPIs 180
days in the future.

2.1 Dataset

Our analysis of model drift is based on daily eNodeB-level
LTE network measurements from a major wireless carrier in
the United States. This dataset, collected from a metropoli-
tan area, includes 224 daily Key Performance Indicators
(KPIs) for each eNodeB deployed. KPIs are statistics col-
lected in the network and used by the operator of the network
to monitor and assess network performance, resource uti-
lization, and user experience, to further support planning,
optimization, and troubleshooting. Further, KPIs can relate
to either voice or data connections, and some of them have
separate directional measurements: the downlink where the
network is transmitting the data down to the UEs and the
uplink where the network is receiving data from the UEs.

1Due to space constraints, we summarize these findings in
the main body of the paper; more detailed exploration is in Ap-
pendix A.

Collection period Jan. 1st 2018 –
May 3rd 2021

Number of KPIs 224

Target KPIs Downlink volume
Throughput
Peak active users
RRC est. success
S1-U call drop rate

Number of eNBs 898

Number of logs 737,577

Table 1. Summary of dataset.

Finally, the dataset contains features used to uniquely iden-
tify eNodeBs (Evolved NodeBs, or the “base station” in the
LTE architecture) and their characteristics (e.g., the density
of their deployment location).

KPIs are typically calculated using eNodeB counters, mea-
surements, and events generated by user equipment (UE)
and radio access network (RAN) equipment. Counters are
incremented based on network events that are generated or
received by the eNodeB. Some metrics are established to
measure the network based on the LTE standard released
by 3GPP (3GPP, accessed July, 2021), the body that deter-
mines cellular standards. These “raw” measurements can
be collected from the eNodeB using external tools that store
data for longer periods of time or build formulas (which
resemble KPIs but are generated from one or many underly-
ing raw KPIs). KPIs are stored as statistical representations
(e.g., min/max, average, percentiles).

Table 1 summarizes the characteristics of the dataset. The
dataset contains information collected from 898 eNodeBs
in the metropolitan area. For each day, the dataset holds the
224 KPIs collected for the base station and divided mainly
across the aforementioned four categories, i.e., traffic, data
speeds, retainability, and accessibility. The dataset spans
more than three years, from January 1st, 2018 to May 3rd,
2021, totalling more than 737,577 daily KPI logs.

2.2 Problem

Network capacity forecasting is important because it guides
infrastructure configuration, management, and augmenta-
tion. We focus on per-eNodeB level KPI forecasting to
provide suggestions for machine learning model deploy-
ment, maintenance, and operation in large cellular networks.
We use historical data—i.e., all available KPIs up to a given
day—to forecast one or more KPIs of interest 180 days
in the future. We use a 180-day forecast window because
the model outputs we focus on are used in practice for
network infrastructure provisioning and augmentation over
long timescales. We examine the target KPIs (in Table 1)
and present the results of downlink volume for brevity.
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Figure 1. Signal decomposition on concept drift of XGBoost model
output targeted to downlink volume.

3 DRIFT COMPONENTS BASED ON
FREQUENCY DECOMPOSITION

Given the temporal nature of the target KPIs in the network,
we look to apply signal processing techniques to investigate
concept drift components. To formalize these patterns and
identify the sources, we perform frequency-domain analysis
on these signals. We take the output of XGBoost model
example to analyze and view the NRMSE (Normalized Root
Mean Squared Error) time series output of a forecasting
model as a short-time signal that has a sampling rate of one
day. The phenomenon on other models and other KPIs are
similar, and we omit them for brevity.

High-frequency drift. As shown, there is a strong 7-day
periodic pattern in Figure 5; this pervasive high-frequency
component contributes to the drift on shorter timescales.
Therefore, we seek to remove it from the signal using a
Butterworth bandpass filter. In Figure 1, we use signal de-
composition to remove the weekly component and plot the
original signal, the 7-day component, and the remaining
signal. As shown, the amplitude of the weekly signal is
relatively higher after COVID-19 lockdowns occur around
April 2020. This means that a stronger fluctuation of pre-
diction errors happens. Because this model is trained 15
months before COVID-19, it fails to capture more abrupt
variance for days of the week during COVID. Over time,
the amplitude of the removed signal gradually recovers, ex-
cept for a slight increase around December 2020. This is
possibly because mobility changes during COVID are more
difficult to predict and vary more across different eNodeBs
than during other time periods.

Low-frequency drift. Longer-term evolution in drift are
evident in lower frequencies; these components can some-
times be attributed to seasonal (i.e., weather-related) pat-
terns. Figure 5 shows a clear low-frequency pattern around
the periodicity of 90 days (roughly a season). The period-
icity is discontinued between July 2019 to April 2020 and

October 2020 to January 2021, though. In general, season-
ality appears to subside during winter periods of each year,
which might be due to user behaviors such as the holiday sea-
son beginning around Thanksgiving to the new year being
more irregular compared with other parts of the year. The
low-frequency signal is especially strong during COVID.
We believe this could partly be due to people remaining at
home, which resulted in more stability in the signals.

Exogenous shock. Looking at the remaining signal in
Figure 1, we observe a clear indication of an exogenous
shock during COVID-19 resulting in sudden drift. The
NRMSE drifts from 7% to 12% during that period. This
drift corresponds with a range of components, clearly visible
as a vertical band in Figure 5 at the same time. Stronger
components from 7 to 90 days indicate severe environment,
user behavior, or network changes. Unexpected drift often
occurs during disasters and other exogenous shocks (Liu
et al., 2021), or potentially as a result of a network-wide
upgrade (e.g., a wide-scale transition of users from 4G LTE
to 5G could result in changes of both network and user
behaviors).

4 WHAT INTRODUCES CONCEPT DRIFT?
For many practical applications, it would be important to
unearth more than the presence of drift, but also an under-
standing of its sources. In this section, we look to provide
insight into concept drift from multiple perspectives.

4.1 Effects of traffic and performance

To understand drift, we begin by exploring natural classes in
the dataset. In this section, we classify the dataset based on
traffic tiers, and performance tiers. The goal is still downlink
volume 180-day forecast. We keep the model, the training
set size and training period the same, i.e., KNeighborsDist
and 14 days of historical data with an end date of July 1,
2018. Moreover, we ensure that in each experiment, we
have the same number of eNodeBs or number of logs for
different classes. Then we retrain and test again based on
these classes.

Traffic. We classify the eNodeBs in the dataset based on
traffic tiers. We split the dataset into four equal-size parts
partitioned by 1st quartile, median, and 3rd quartile based
on the downlink volume KPI. Then we retrain models and
test by date. As shown in Figure 2a, data subsets with
higher traffic history have better predictions. The average
NMRSE is lower for higher volume eNodeBs compared
to low-volume eNodeBs, and the weekly patterns show
smaller fluctuations. This may be because that for a volume
forecasting problem, if we decompose the dataset based
on volume, even though the model performance on raw
RMSE could be similar, when normalized the same amount
of deviation would result in more concept drift.



Understanding Model Drift in a Large Cellular Network

20
19

-04

20
19

-07

20
19

-10

20
20

-01

20
20

-04

20
20

-07

20
20

-10

20
21

-01

20
21

-04

Test Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
No

rm
al

ize
d 

Ro
ot

 M
ea

n 
Sq

ua
re

d 
Er

ro
r Quartile

1st quarter
2nd quarter
3rd quarter
4th quarter

(a) Traffic (Volume).

20
19

-04

20
19

-07

20
19

-10

20
20

-01

20
20

-04

20
20

-07

20
20

-10

20
21

-01

20
21

-04

Test Date

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

No
rm

al
ize

d 
Ro

ot
 M

ea
n 

Sq
ua

re
d 

Er
ro

r Quartile
1st quarter
2nd quarter
3rd quarter
4th quarter

(b) Performance (Throughput).

Figure 2. Effects of traffic and performance tiers on concept drift.
The lowest quarter in traffic and the highest quarter in performance
exhibit the highest NRMSE.

Performance. We again split the dataset into quartiles, but
here we classify based on the throughput. In Figure 2b,
again, we see that from 1st to 3rd quartile, the average
NRMSE is less and the weekly component has slightly
smaller fluctuations. The 4th quartile, though, which is
the group of eNodeBs with the highest throughput values,
experiences the higher NMRSE values.

4.2 Permutation-based feature importance drift

We seek to understand the input features, and their relative
importance, that drive model performance. To do so, we
discover the most sensitive features through permutation.
The higher the score for a feature, the more important it is
to the model.

We again use KNeighborsDist and 14 days of historical data
with an end date of July 1st, 2018 for the model. We then
apply the permutation-based approach to each data subset
split by dates. Figure 3 demonstrates the top 6 features that
most contribute to model performance using the volume
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Figure 3. Top six features that contribute to concept drift.

KPI, meaning the permutation score related to the change in
the number of MB predicted. As shown, the top three fea-
tures dominate the majority of the predicted volume changes
using this technique. Before the COVID-19 lockdown, per-
mutations on User Equipment (i.e.UE) downlink packets
can cause the predicted downlink volume to deviate over
200k MB. At the same time, the UE uplink packets have a
permutation score of 48k MB on average. Then beginning in
early 2020, effect related to COVID-19 impact the network,
and these two features both experience significant drops.
UE downlink packets drops to roughly 120k MB, while UE
uplink packets even drops below 0, which indicates that
the feature has begun to harm the prediction performance.
After October 2020, the permutation score of UE down-
link packets returns to its prior range and even increases,
reaching up to 250k MB. Over the entire period, the third
most important feature using the permutation technique is
the Real-time Transport Protocol (i.e.RTP), which tends to
maintain a relatively stable permutation score.

We find that decreases of the top two features negatively
correlate with the increase in NRMSE, indicating that some
features were less important during COVID-19. The magni-
tude of permutation score decreases may be a good indicator
for the sensitivity of a particular feature to drift.

5 CONCLUSION

This paper characterized the sources of model drift in a large
cellular network in the context of KPI forecasting. We ex-
plored how data drift can contribute to concept drift. Using
dataset decomposition and permutation-based importance
explanations, we explored the sources of the concept drift
when predicting KPIs, focusing on downlink volume fore-
cast. We find that low traffic volume, and higher network
throughput or speed also correspond to more concept drift.
We also find that UE downlink data packets, UE uplink data
packets, and total RTP received packets are the top three
features that drift in ways that affect model performance
over time.
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A DATA DRIFT TAXONOMY

Data drift is caused by distributional changes in features
that are used as input in a machine learning pipeline. Such
changes can be predictable or unpredictable; sudden or grad-
ual; planned or unplanned; recurring or one-time. In this
section, we provide a brief taxonomy of data drift using ex-
amples from our dataset. Figure 4 demonstrates long-term
evolvements of downlink volume, with 3-week inset figures
that provide a closer look at weekly patterns.

Gradual drift. Gradual drift occurs when the distribution
of a variable changes over a period of time. Figure 4a shows
an example of gradual drift using the data volume KPI for
an eNodeB in our dataset. As shown, over the roughly 3.5
years in the plot, the volume increases for the eNodeB from
0.4 normalized data volume to a somewhat steady point
around 0.8 in the latter half of 20202. Zooming in, the
3-week inset reveals a periodic pattern three times, which
indicates a weekly component. Gradual drift can be caused
by a number of factors in real-world networks. For exam-
ple, cellular carriers continually augment and improve their
infrastructure. Upgraded infrastructure could then allow
customers to send and receive more data on the network,
causing the KPI to increase over time for a given eNodeB.

Incremental drift. Incremental drift is similar to grad-
ual drift in that the variable shifts to a different distribution;
however, incremental drift includes more distributions in the
interim of a shift (i.e., phase shifting from one steady state
to another with a period of transition in-between). Figure 4d
illustrates incremental drift for an eNodeB in our dataset,
again using the data volume KPI. As the plot shows, vol-
ume on this eNodeB steadily increases over the observation
period from roughly 0.2 normalized volume to 0.7. This
incremental drift could be attributable to network changes
such as the introduction of a new service plan and promotion.
For example, carriers may add a plan that offers customers
unlimited data. As users increasingly adopt such plans over
metered plans, data volume increases for network eNodeBs.
Note that even if long-term evolution is incremental, we still
observe weekly patterns on shorter timescales.

Sudden drift. Sudden drifts correspond to abrupt shifts in
the dataset distribution. In the context of cellular networks,
many events can be the cause for a possibly very noticeable,
sudden drift. We can categorize these sources of sudden
drift into operator events, (e.g., network-wide upgrades(,
scheduled events (e.g., a special event such as the Super
Bowl), or unexpected events (e.g., the COVID-19 pandemic
or natural disasters).

Figure 4c shows a clear instance of sudden drift extracted

2Note that our examples of drift in operational networks may
not perfectly resemble textbook definitions of data drift, as real-
world network KPIs are inherently noisy.
from our dataset concerning total downlink volume for a
given eNodeB. We observe that the normalized total dras-
tically decreases starting in early 2020, then stabilizes to a
consistently low average from March 2020 onwards (almost
60% less experience volume). These dates suggest that these
sudden changes could be due to the events caused by the
COVID-19 pandemic where people’s mobility was heavily
affected, and cellular networks with it (Lutu et al., 2020).

In contrast, previous research into concept drift adaptation
has primarily focused on how to minimize the reduction
in accuracy by recovering using new data samples. Al-
though this approach can help in some cases where the
sudden changes are permanent (e.g., network updates), it
can be counter-effective when applied to temporary and
unpredictable shifts that cause one-off, ephemeral devia-
tions in the data distribution (e.g., trends shown during the
pandemic lockdowns).

Recurring context. Recurring context differs from previ-
ous categories as it does not refer to a permanent or persis-
tent change in the dataset distribution. In contrast, recurring
context identifies changes that occur periodically in the data.
Such changes are strongly present in networking data as
multiple factors can affect network performance and be-
havior. For example, users’ behavior and mobility patterns
vary during the days of the week (weekdays vs weekend).
Weather can also cyclically affect network performance;
for example, rain and foliage can negatively affect the ra-
dio environment, and thus the transmission rates of a base
station.

Figure 4d demonstrates the presence of recurring context
of one eNodeB in our dataset. From the figure, we observe
that summer months (i.e., May to September) periodically
show up to 50% lower data volumes for the base station,
possibly a product of a lesser users’ presence and therefore
usage of this particular eNodeB. These recurring patterns
are heavily affected in 2020, a byproduct of the pandemic
that led to lower volume demand in March, i.e., the moment
when stay-home regulations started. Weekly pattern exists
during stable months such as February 2020.

In the literature (Gama et al., 2014; Lu et al., 2018), re-
curring context has normally been tackled by the use of
historical data matching the current data distribution. This
approach, however, can introduce new challenges for net-
working data, which typically experiences multiple types
of drift at once, such as the contemporaneous sudden and
recurring context drifts from the previous example.
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(a) Gradual drift.
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(b) Incremental drift.
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(c) Sudden drift.
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(d) Recurring context.

Figure 4. Data drift taxonomy examples demonstrated by normalized downlink volume. Inset figures exhibit a 3-week view (all starting
from Sunday) of normalized downlink volume for the box-selected period. Note that gradual and incremental drifts are different because
incremental drift contains more intermediate distributions.
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Figure 5. STFT Periodigram, whose y-axis is in log scale.

B DRIFT COMPONENTS BASED ON
FREQUENCY DECOMPOSITION

Given the temporal nature of the target KPIs in the network,
we next look to apply signal processing techniques to further

investigate drift components. To formalize these patterns
and identify the sources, we perform frequency-domain
analysis on these signals. If we view the NRMSE time
series output as a short-time signal that has a sampling
rate of one day, then we can apply a Short Time Fourier
Transform (STFT) to the time series. STFT can assist us in
discovering major frequency components and then we can
use a bandpass filter to yield a filtered signal with a specified
frequency.

We take the output of XGBoost model to analyze. Since this
is a signal with relatively short duration—containing 765
date-dependant NRMSE scores, we use a sliding window of
365 days that slides one day for each sample to compute the
Fourier Transform separately. Figure 5 shows the STFT of
NRMSE time series output from XGBoost on the downlink
volume KPI. We plot the y-axis in log-scale in order to show
lower frequency values more clearly. On the x-axis, each
test date represent the Fourier Transform executed on this
date and the NRMSE in the next whole year, e.g., July 1st,
2019 actually contains all NRMSE from that date to July
1, 2020. Unsurprisingly, as shown in the figure, there is
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a very strong component on the period of 7 days in the
STFT, illustrating a consistent weekly pattern. Note that
there’s also an apparent pattern around 3.5, which is due
to the harmonic effect of the Fourier Transform. We also
observe seasonal effects on the components, and we see
a periodicity shift around 90 days. However, from July

2019 to April 2020 and October 2020 to January 2021,
appears on the 90-day components. During COVID-19
lockdown, components of many different periodicity appear
vertically in Figure 5. We expect that these changes we
attributable to a fundamental shift in signals during COVID-
19, manifesting in abnormal drift.


