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Achieving advanced Mobile Edge Computing (MEC) services such as dynamic resource
assignment and slicing, maintaining Quality of Service (QoS), and enabling heteroge-
neous virtual functions are some of the technical challenges associated with edge-cloud
enhanced 5G architectures now under consideration. This paper proposes a named-
object based virtual network (NOVN) architecture to support low-latency applications
in the MEC. Software router implementation running on the ORBIT testbed validates the
named-object approach, showing low VN processing and control overhead, and making it
possible to achieve low latency. A latency performance improvement of 30% is achieved
as compared to the baseline implementation without NOVN. The results also validate
feasibility of using the advanced MEC services for an example latency constrained edge
cloud scenario.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mobile Edge Computing (MEC) is envisioned to be a core component in future cellular architectures, expected to grow
apidly in the next few years due to continuing large-scale adoption of smartphones as well as emerging technologies
uch as IoT (Internet-of-Things) and augmented, virtual or mixed reality (AR/VR/MR) [1–3]. MECs exploit resource locality
nd have been embraced by infrastructure and service providers for their network evolution. In particular, providers are
ncreasingly aiming to distribute their service points of presence (i.e. processing and storage) in order to serve their clients
ight at the edge of the networks they are connected to. The industry and research communities alike have embraced this
pproach and are proposing solutions known as edge clouds [4–6], or fog computing [7], that can better scale and provide
ow delay services to real-time applications.

Edge clouds distributed at the periphery of the network represent a conceptually simple and scalable solution for
elivering computing services to mobile users. Moreover, because of the lower network delay in reaching cloud resources,
EC offers the potential to meet strict service requirements (e.g. low latency). These advantages come at the cost of
ignificant technical challenges associated with moving cloud processing from a centralized data center to a loosely
oupled set of servers located at the edge of the network. One central challenge is that of distributed control: By their
ery nature, edge clouds are placed in multiple network domains with heterogeneous bandwidth and latency properties
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without a single point of control. While existing solutions such as network slicing [8] and service chaining [9] provide
ways to interconnect distributed, heterogeneous resources, end-to-end quality remains a concern as existing large-scale
in-network measurement techniques do not provide sufficient insights required to achieve cross-layer optimizations such
as seamless service access via customized routing. A second key challenge arises from the heterogeneity of computing
resources and the limited amount of computational power they are equipped with. In contrast to the previous data
center driven cloud model, edge clouds are often co-located with existing network equipment and deploy limited
computational resources. This implies the need for distributed resource management (i.e. task assignment, load balancing
and application-level quality-of-service management) across heterogeneous edge computing resources. User mobility
further exacerbates this issue, as link or node failures and network congestion induce additional challenges in the edge
clouds inhibiting seamless service access.

To support the large-scale, distributed, and localized nature of edge cloud a general technology and architectural
olution for edge clouds will thus require: (a) Control as well management plane protocols to provision these hetero-
eneous resources in real-time; (b) Distributed or centralized resource assignment strategies, for traffic load balancing,
rchestration of computing functions and related network routing of data; (c) Mobility management techniques such as
ynamic network slicing, and (d) Low-overhead mechanisms to reach the heterogeneous set of distributed resources in
eal-time.

This paper designs, integrates, and evaluates edge cloud components aimed at fulfilling the requirements of advanced
ervices over the MEC architecture. First, we design the Named-Object Virtual Network architecture (NOVN), a Layer 3
irtual network solution. The named-object based networking abstraction has been introduced in the literature [10] as
way to support seamless mobility in the network. By dynamically resolving their names to the network addresses,

he named-object abstraction provides a way support services such as distributed caching, faster multihoming, efficient
ulticast, and delay-tolerant content distribution. We extend this general abstraction to design a virtual network
olution that can provide the control mechanisms at Layer 3 to connect distributed resources across network domains.
tarting from the NOVN framework, we develop routing mechanisms that exploit the abstractions of the architecture to
upport distributed edge-cloud services. This technique, called Application Specific Routing (ASR), supports routing service
equests based on cross-layer information extracted from network and application. Through this technique network
perators can achieve dynamic resource management using in-network resource slicing and devising mechanisms for
he quality of service (QoS) control. Finally, we develop a working implementation of NOVN, ASR, and advanced service
cenarios using the Click [11] modular router and the MobilityFirst network architecture software prototype [12]. As part
f this effort, we present experimental results obtained to validate the feasibility of this architecture and demonstrate
ignificant latency improvements for real-time applications.
The rest of this paper is structured as follows. Section 2 presents edge cloud requirements to support the advanced

ervices such as cross domain connectivity, dynamic re-routing and cross-layer network support, and align them with
he key MEC architectural components. Section 3 introduces the core design of NOVN; starting from the definition of
amed-objects, the high level design choices taken are described. The scalability and consistency challenges of name
esolution server (NRS) are discussed in Section 4. Section 5 introduces how NOVN, integrated with techniques such as
pplication specific routing and network slicing could be exploited to support advanced network services. To support the
roposed design, in Section 6 a comprehensive set of experiments based on a working prototype deployed on the ORBIT
estbed [13] is presented. Performance evaluation of the proposed NOVN architecture and the related scenarios including
omparison with the overlay based solutions are described in Section 7. Finally, in Section 8 a further discussion on the
esign choices and a comparison to related work is provided. Section 9 concludes the paper.

. Edge cloud requirements

In this section we discuss the requirements imposed by edge clouds on developing an architecture involving virtual
etwork and advanced MEC services to interconnect and manage distributed resources. Starting from a review of existing
irtualization techniques, we discuss the need for the introduction of Layer 3 network virtualization.
Edge clouds are highly distributed architectures that require loosely coupled coordination mechanisms to operate.

esource allocation in edge clouds is more difficult than in a data center. This is due to the fact that edge clouds do not
ave the law-of-large-numbers advantage of a data center which aggregates requests from tens of thousands of users.
nstead, they must deal with requests from smaller numbers of users characterized by significant randomness in both the
patial and temporal dimensions. Due to their physical presence in multiple network domains and the type of resources
hey deploy, the following requirements are identified in contrast to the ones usually presented by datacenter based
louds.
ross Domain Connectivity. Management of distributed cloud resources becomes more complex when the edges extend
cross multiple domains. A key requirement for this scenario is to be able to synchronize resources to coordinate and
ommunicate state potentially across multiple domains managed by different commercial entities such as network or
ervice providers.
ynamic Re-Routing. Due to the nature of IP addresses, any configuration change caused by failure or resource migration
equires to reconfigure connectivity between edge computing resources. The new information has to be propagated across
ll the participating entities. This can – and often does – cause all ongoing traffic to be lost. This is due to packets not
2
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being able to carry the necessary information to self-correct temporary errors. Approaches to reduce this impact have
been explored [14,15], but require the creation of dedicated control channels to maintain persistent traffic flow.
Support Cross-Layer Interactions. Edge clouds require dealing with a mix of computing and networking resources with
complex cross-layer interactions and considerable heterogeneity in both networking and computing metrics across the
region of deployment. Conventional large datacenters have addressed this problem by requiring uniformity in the network
fabric and using software-defined network (SDN) technologies to assign resources in a logically centralized manner. On the
contrary, for a distributed architecture, a key requirement arises due to the need of dynamic allocation of cloud processing
requests across available edge computing and networking resources [16].
Seamless Service Integration. Edge clouds promise to support tighter close loop low latency applications which require a
seamless integration of services with the network entities whose performance can be monitored, reported and enhanced.
The key requirements therefore is to design mechanisms which can blend service state parameters into the network to
create a fully virtualized end-to-end QoS-enabled system.

The mapping of these requirements to the corresponding architectural component of MEC is further discussed as
follows.

2.1. Enabling QoS using Virtual Networks

Virtual Networks (VNs) are now days the main technology used to connect resources across the Internet. VNs
support the illusion of a customized network with a user-specified topology, offering the ability to share the underlying
infrastructure through network slicing. Further, depending on the solution employed, VNs can offer the ability secure
the communication channel between member of the virtualized network as well as to achieve deterministic QoS
characteristics matched to application requirements [17].

Depending on the purpose, different techniques have been applied at different layers of the networking stack in order
to realize virtual networks. Existing VN solutions can be roughly grouped into two categories: tag based virtualization at
Layer 2 and overlay based Layer 7 solutions
Tag Based Virtualization. Tag based approaches exploit flat unique identifiers placed at different layers of the network
stack to uniquely identify packet flows. Example of this are VLANs [18] and MPLS [19]. Cloud networks have been one
of the main adopters of Layer 2 virtual networks, with VN techniques being used to abstract the distribution of physical
and logical resources – e.g. applications, databases and more – within data centers, allowing for flexible management
techniques. This approach is exemplified by NVP [20] (and similarly by FlowN [21]) that exploits it to implement a network
management system, within an enterprise data center. Thanks to the built-in mechanisms available within the network
domain fabric – e.g. Ethernet’s class of service (CoS) – L2 VNs offer the ability to implement fine grained QoS scheduling
of the traversing traffic. The core issue with these solutions is the limited scope in which they can be applied, as the
employed tags are limited in size and have validity only within a single network. For this reason they can solely be used
to support single domain solutions.
Overlay Networks. Overlay networking approaches, e.g. VINI [22,23] or point to point connectivity between remote cloud
locations [24,25], represent a flexible way for deploying experimental networks and protocols on top of the existing
infrastructure. Through encapsulation of network packets on top of UDP packets and tunneling across participating nodes,
they allow for the quickest solution to implement experimental protocols on top of the existing infrastructure. With this
solution, flexibility and simplicity come at the cost of additional overhead. Moreover, residing at the application layer
they lack the visibility of underlying network layer performance parameters, limiting their utility in scenarios that might
benefit from custom metrics and deeper cross layer optimization [26,27].

The need for layer 3 network virtualization. Looking at the two available solutions, we identify three limitations: (1) Most
virtualization techniques are limited to single domain scopes, e.g. a data center or an access network; further, when
extended to support larger networks, they either (2) need full control of the network environment, or (3) rely on overlay
solutions that are expensive due to the generated overhead and lack any access to the underlying network environment.
The overall goal is to provide a solution that enables the exchange of information between the virtualized environment,
the applications that run on top and the underlying network. This solution should offer service providers the ability to
exploit network virtualization to enhance deployed solutions like edge clouds, where applications might benefit from
affecting routing decisions based on custom metrics and cross layer optimization. From this analysis, we identify the
network layer as the right level to host a Virtual Network design. Layer 3 is by definition where protocols are used to
interconnect networks resources. Extending it to support virtualization provides the most natural solution to conveniently
support interconnecting resources that span multiple networks. The next section defines how a VN can be integrated into
the network layer.

3. Named-object based L3 network virtualization

Recognizing the need to provide a solution that offers the logical simplicity of L2 network virtualization while offering
the flexibility to control traffic across network domains, this paper presents NOVN [28], a virtual network solution that
xploits the concept of named-objects [29] introduced in the MobilityFirst future Internet architecture [10] to realize
logically clean, easily deployable, virtual networking framework at Layer 3. NOVN tackles the control mechanism
3
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Fig. 1. NOVN layers of abstraction.

Fig. 2. The named-object abstraction applied to core use cases.

challenge by applying name indirection to create clean partitions across logical layers (Fig. 1). First, physical network
resources are mapped to globally unique names, eliminating the need of continually tracking routers addresses and
possible configuration changes. A second layer of abstraction then maps network elements to the participants of the
virtual network, creating a logical network on top of the infrastructure.

For more than a decade, the research community has advocated the separation of names (identities) from network
addresses [10,30–33]. Named-objects [29] are a powerful abstraction achieved through the use of a dynamic globally
available Name Resolution Service (NRS) for mapping names to routable network entities. This separation has inherent
benefits in handling mobility and dynamism for one-to-one communications. The general concept of named-objects can
be extended to achieve considerable flexibility in creating a variety of new service abstractions [34] as shown in Fig. 2.
First, names can be used to represent many different Internet objects; for example, a cell-phone, a person, or a group of
devices; the latter concept also applies in the context of network virtualization, as it provides the basis for NOVN ’s solution
f defining participation of network elements to the logical network. In this case, the named-object abstraction can be
sed to define entire VNs and store the corresponding topology directly into the NRS. The routers’ job is then simplified as
hey can support multiple virtual network policies simply by indexing their routing table to the Virtual Network Identifier
VNID) associated with a given network. This makes it possible to operate VNs without the need for any additional overlay
rotocols, creating the sense of VNs as an integral feature of the network protocol stack.
The named-object based virtualization has many advantages. Traditional QoS control mechanisms require complex

acket sniffing and processing to manage network resources for achieving traffic prioritization and resource reservations.
he name-based network virtualization technique described here simplifies the QoS control by mapping each virtual
etwork to a unique identifier (Virtual Network Identifier – VNID) encapsulated in the packet header. Striping VNID from
he packet header and querying a Name Resolution Server (NRS) for the VNID’s allowed traffic capacity provides a L3 in-
etwork support for the scenarios such as shaping network traffic, limiting bandwidth for a VN, and ensuring QoS using
he ASR metrics. Furthermore, with a network entity (NE) such as router allowed to be a part of multiple name-based
irtual networks, techniques such as network slicing can be achieved by the statistical multiplexing of the resources while
ushing the VNID to the resource mapping to the NRS during VN instantiation or dynamically, and run-time retrieval of
he same by the NE involved in the VN. The prime advantage of this approach is that the resource provisioning and their
haining need not be done in advance. At each NE hop, both the resource metric and the next hop information is obtained
rom the NRS which thereby inherently handles scenarios such as node failure, link failure and traffic congestion without
ffecting the ongoing virtual network connection.

.1. NOVN general design

NOVN addresses the fundamental issues of virtual network management and deployment support through the use of
amed-objects. Fig. 3 lists for clarity the set of core design operations are at the base of the framework. To simplify the
4
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Fig. 3. NOVN design.

iscussion, three basic assumptions are considered throughout this section: (1) the availability of a globally accessible NRS
apable of storing mappings from names to list of values; (2) the ability to identify network classes based on a unique
dentifier (SID); and (3) the flexibility of accessing names and addresses as part of a network header to enable hybrid
outing, similar in spirit to the one employed in the MobilityFirst architecture [10].
ogical Definition of a VN through Naming. NOVN simplifies the definition of the virtualized logical layer through
nformation offloading to the NRS. This is done as a three step process: (1) first, a unique identifier is assigned to the
N and a mapping from such name (VNID) to all participating resources is stored in the naming service (red box in
he Figure); referenced resources are identified with a name that has meaning only within the limits of the VN logic —
.e. they are unique and not shared across different VN instances; this provides the dual function of simple access and
istributed information recovery. (2) Each VN resource name, is then mapped into two values: (a) the name identifying
he resource the virtualized element is running on top and (b) the list of its neighbors. (3) Finally, these identifiers are
apped into physical Network Addresses (NA) allowing for normal forwarding operations. Items 1 and 2 above define the
igher abstraction level shown in Fig. 1 and their mapping into the mid-layer, while item 3 provides the last translation
o the bottom layer, that is, the physical infrastructure.
ootstrap Process & Management. As the topology information is made available at a global scale through the NRS and
an be dynamically retrieved from participating resources, the scope of what information is required to share at each
ayer of the network infrastructure is limited in comparison to other solutions, e.g. [22]. This allows two core issues to be
andled separately: the local problem of mapping virtual to physical resources and the global problem of coordinating the
irtualized logic across domains. The first one can be handled either in a network-by-network basis or by a centralized
uthority while the second one is offloaded to the NRS. To this end, the bootstrap process in NOVN is then limited to
llocating on participating nodes instructions on how to retrieve the VN topology, i.e. the VN unique identifier used to
uery the NRS, and the information about the physical resources that are required. Similarly, management operations,
.g. migration, of resources can be handled through NRS offloading too, whereas local changes are reflected into the
lobally accessible service and dynamically resolved at forward time.
outing & Forwarding. Providing full flexibility for different routing configurations, NOVN does not constrain VN users to
mploy specific routing protocols. Routing information is exchanged across nodes through control packets encapsulated
ccordingly in order to reach participating nodes. Similarly, data forwarding happens on a hop-by-hop manner across
outers of the virtual network. When a data chunk reaches one of these routers and a routing decision is taken, the chunk
s encapsulated within an external network header that contains information to reach the next VN router (shown in
ig. 3). At nodes not participating in the protocol, normal routing decisions are taken using the external network header.
s names identify each hop, forwarding can happen independently from the physical network configuration.

.2. An embedded virtualization abstraction

Conventional network virtualization techniques suffer from the fundamental shortcomings of the underlying IP
rchitecture and address structure, limiting their flexibility and increasing deployment complexity. Consider the case of
verlay based solutions (e.g. VINI [22]) where virtual router interfaces are assigned private IP addresses and then mapped
o public ones that can be used to tunnel packets across participating resources (Fig. 4). Due to the nature of IP addresses,
ny configuration change due to failure or resource migration requires the tunnel to be reconfigured, the new information
o be propagated across all the participating resources, causing the loss of all ongoing traffic. This is due to packets not
eing able to carry the necessary information to self-correct temporary errors. Approaches to reduce this impact have
een explored [14], but require the creation of dedicated control channels to maintain persistent traffic flow.
NOVN solves this issues by creating clean partitions across logical layers, as previously shown in Fig. 1. This is obtained

y recursively mapping from VN dedicated names, to network elements names and finally to the physical addresses. These
ayers of abstraction are critical in allowing a separation of management issues. Consider, for example, the case of virtual
5
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Fig. 4. The effect of router migration on overlay deployments (left) and NOVN (right).

Fig. 5. Separation of local and global scale problems through a distributed coordination plane.

router migration. In NOVN, the process is simplified by limiting the impact of the migration to remapping identifiers
between the top two layers. Once the required migration process is defined, the entry mapping the VN element to the
network element is re-written to the new location. If in-flight packets are forwarded during the transfer process, name
indirection allows for fast recovery without need of end-to-end retransmission, by resolving the delivery location through
the NRS. Similarly, if a physical machine needs to be replaced due to failure or an address change is required, a new one
can be instantiated and the state transferred.

One could argue that the employment of multiple layers of abstraction can introduce additional overhead due to
the resolution costs of crossing the different logical layers through name resolution and due to the additional headers
employed. The impact of these is alleviated though by the employment of two separate techniques: (1) While name
resolution can become costly if performed for each forwarding decision, the action is not required as for the majority of
the time the resources do not change; hence, information can be pre-cached on the participating routers and only once
resources are notified of occurring changes they have to update their mappings by querying the NRS. (2) As tag switching
and SDN techniques [35] have demonstrated, matching multiple fields in hardware is a feasible task and as software
components take over, this becomes an even easier task. An empirical demonstration of the feasibility of the approach
will be given as part of the prototype deployment presented in later sections.

3.3. Separating local and global tasks

Managing resources in virtualized environments increases in complexity when extended to multiple domains. This
is true for overlay approaches, where resources need to be coordinated and communicated potentially across multiple
networks in order to synchronize, and it is mostly untreatable for tag based solutions that are usually optimized for small
domains, e.g. a data center or an access network [20]. This is a consequence of the complexity of assigning coherent
resources across multiple domains that can be managed by different commercial entities.

NOVN approaches the problem by creating a distinction between the local problem of assigning network and computing
resources and the global problem of providing coordination mechanisms across domains. The NRS and the named-
object abstraction are the key elements employed to offer ways for eliminating the complexity as they provide the
infrastructure a way to offload the sharing of the virtualized topology and the mapping of the underlying elements. With
this, network administrators can then separately focus on deploying techniques for optimizing the management of their
infrastructure and the placement of the resources while relying on globally available mappings for coordinating with
partnering networks.

Fig. 5 outlines the resource allocation process when a hierarchical set of service coordinators is employed. In this
example, each network domain exposes an interface that services deploying a multi-network VN can invoke to allocate
6
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resources that span across the participating networks. While this example employs the concept of a single service interface
per network with a centralized controller for requesting and coordinate resources across networks, the same tools can
enable more distributed mechanisms for allocating and deploying virtual networks.

3.4. Network state exchange

Similar in spirit to previous attempts of providing full control of the deployed routing protocols on top of virtualized
etworks [22], NOVN has been designed to offer routing independent network abstractions. In other words, administrators
f virtual networks can independently choose which routing protocols better suit their needs as long as they have ways
f learning the underlying network conditions, e.g. virtual links costs. This latter problem could be approached in multiple
ays: (a) resorting to over the tops approaches where measurement tools are used to extract the information, as done in
INI [22]; (b) by allowing routing information sharing across layers, through the use of APIs exposed by the underlying
etworking logic. The current NOVN design favors the second approach, acknowledging the increasing reliance of software
ased routing tools that can support APIs used by the virtual layers on top to extract link state information.

. Name resolution service impact on the architecture scalability

The named-object abstraction of NOVN relies upon the use of a Name Resolution Service (NRS). Therefore, the
erformance of the NRS becomes critical to achieve consistent performance. Multiple previous projects have demonstrated
ow different NRS designs [36,37] achieve low resolution latency goals of less than 100 ms on average for lookup
perations. Moreover, additional studies demonstrate how to further reduce response time exploiting concepts such as
aching and locality [38]. Commercial [31] and experimental [37] versions of such services are currently running and are
vailable for use. This section provides an overview of the different implementation approaches and details how to handle
onsistency and scalability issues while relying on the NRS to deploy the NOVN architecture.

.1. NRS implementations

NRS designs can be classified as either hierarchical or flat based on their naming structure. For hierarchical namespaces,
ommercially proven implementations such as DNS are available. Unfortunately, it has been demonstrated that DNS is
ot suitable as an NRS implementation in a highly mobile environment due to its static placement strategies inherently,
.g. time-to-live (TTL) based caching, limiting its effectiveness upon end-host mobility. This work relies on the use of a
lat namespace for which there are several NRS implementations available in the literature. We select two designs as
andidate implementations for NOVN.
uspice [37]. Auspice’s logic uses a demand-aware replica placement engine to distribute GUID to NA records across
vailable caches to provide low lookup latency, low update cost, and high availability by carefully choosing the number
nd locations of required replicas for each GUID as per the lookup and update request rates, the existing replicas for a
UID, and aggregate load at a replica. This geo-distributed engine is implemented as a logically centralized authority which
racks query demands using a recursively mapped key–value store. In Auspice, a GUID belongs to a number of replica-
ontrollers (fixed) and active replicas (variable). The replica-controllers maintain information about active replicas such
s their number and locations whereas the actives replicas maintain a GUID record and process a request. The placement
lgorithm is computed locally at each replica using lookup to update ratio of a GUID thus limiting the update cost. The
eplica location is chosen such that the lookup latency is minimal by selecting some replicas closer to the higher demand
ones while others placed randomly for load balancing.
MAP [36]/GMAP [39]. In DMAP, name mappings to network addresses are distributed among participating Autonomous
ystems (ASes) while also choosing a deputy As which has minimum IP distance to the current hash value of an IP address.
MAP routers apply K consistent hash functions (where K is the number of replicas desired) to map names to the gateway
outers wherein they are stored. GMAP builds over DMAP by organizing the name to NA mappings hierarchically in three
evels – local, regional, and global – to exploit spatial locality. Furthermore, the server lookups are load balanced using a
oncept of probabilistic caching, thus improving scalability over the baseline solution.

.2. NRS challenges

The implementation of a large scale database such as a Name Resolution Service creates challenges of information
reshness as well as lookup delay that might compromise the requirements of the NOVN architecture. In the following
ection we describe how both architectures could be safely employed to deploy NOVN.
onsistency. Inconsistency may arise when a query reaches a cache that does not hold an up to date name/address
apping due to host mobility and late update, or incorrect prefix cache in a BGP table, thus incurring additional query

esponse delay.
In Auspice [37], the consistency issue is handled using an explicit coordination mechanism between the consensus

ngines of the replica-controllers and active replicas, where each NRS node propagates information to a set of replica
ervers. In DMAP [36], consistency is quantified as the probability of BGP churn by varying the percentage of prefixes that
7
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are newly announced or withdrawn from 0 to 10%. If a GUID is not found at an AS, it replies with a ‘‘GUID missing’’ message
and the querying node contacts another replica. The fragmentation of IP address space may lead to an unannounced IP
as a hash causing the IP hole problem. To maintain consistency, the withdrawing AS sends a GUID insert message to the
deputy AS while deleting its own entry. Later, the subsequent queries hit a IP hole and thus the deputy AS is queried to
obtain the latest mapping. In case a query is not found at an AS, the querying AS sends a one-time migration message to
the deputy to self-assign a mapping thus removing an inconsistency.

GMAP [39] further enhances DMAP’s consistency mechanisms by using a sequential scheme which piggybacks the
erver availability updates in the query replies along the request path. It is shown that for up to 5 replicas, there is only
5% failure rate which shifts the median from 40.5 ms to 41.3 ms which is acceptable for consistency in NOVN as there
re practically a very few origin changes for an AS prefix according to [40,41].
calability. An increase in number of replicas improves NRS scalability but creates a consistency problem. In Auspice, the
ynamic nature of its placement algorithm maintains a balance between the cost and the performance. At lower loads,
he lookup latency is minimized by selecting maximum number of replicas whereas at higher loads, only the popular
UIDs are replicated at multiple locations thus keeping cost under control without sacrificing performance a lot, making
he solution scalable.

In DMAP the balance between consistency and scalability is provided by (a) using a single overlay-hop path to a
torage location and (b) not adding a table maintaining traffic unlike other DHT implementations. The query response
ime evaluation of 105 name insertions and 106 queries shows that with K = 5, 95% of the queries complete within
6 ms which is reasonable for a large scale system. The query response delay in DMAP is low because the updates do not
ntroduce additional delays, and a name/address mapping is stored at multiple locations which can be queried by a node
rom a location closest to the itself. GMap provides scalability at the cost of not maintaining per-GUID state at all the
ervers, and keeping the cache size low for popular GUIDs. As even commercially available VN techniques [42] introduce
delay in the order of ∼150–200 ms when using 3–4 network hops – almost twice as compared to the delay value of

ess than 100 ms achieved by DMAP – we argue that these implementations are acceptable for NOVN.

. Advanced MEC techniques

The increasing softwarization of the network infrastructure, enabled by the advancements in computing power and
irtualization techniques, has facilitated the support of new applications and services inside the network. Among different
pportunities, network vendors and researchers have looked at solutions that explore how to better integrate inputs
rom the application logic to optimize network functionality [26,27,43,44]. While this is a useful direction, more general
olutions capable of extending beyond the limits of single networks are still lacking. Such working solutions would highly
enefit distributed service scenarios, where advanced control mechanisms are required. In this section, techniques to
fficiently utilize the named-object based virtualization in the MEC architecture are described.

.1. Application specific routing

MEC architecture using NOVN is extended to support advanced routing through a technique called Application Specific
outing (ASR). ASR defines a mechanism aimed at exploiting a comprehensive set of information from both network and
pplication layers to enable custom delivery mechanisms, giving service providers the flexibility to incorporate parameters
hich allow for utilizing information above the network layer for routing decisions. Consider, for example, the case of
service deployed at multiple locations across different domains: application state could be exploited to implement
dvanced anycast delivery based on network metrics and service load at the end points.
Two key technology components are required and introduced into the NOVN framework to support ASR: (1) the ability

o aggregate multiple service instances under a single name, a natural extension of the named-object abstraction. (2) the
bility to make application nodes participate in the routing protocol by sharing their application state. NOVN supports
he first one by offloading the list of participant locations under a single name into the name resolution service and the
econd one by allowing custom routing protocols to be deployed on top of any underlying infrastructure and integrating
nd point APIs to push application state into the VN.
For edge clouds to scale well and deploy easily, it is necessary to develop a robust and self-organizing distributed

rchitecture analogous to the way in which inter-domain protocols in the Internet enable networks to cooperate on
outing while retaining some measure of local policy control. Of course, the distributed algorithm design problem for
dge clouds is a more difficult one because we are dealing with a mix of computing and networking resources with
omplex cross-layer interactions and considerable heterogeneity in both networking and computing metrics across the
egion of deployment.

ASR supports edge cloud solutions through the support of advanced cross-layer routing mechanisms. Consider for
xample the scenario depicted in Fig. 6, where a collection of servers offer a service to its clients. NOVN and ASR provide
he base to deploy such distributed tools by: (a) allowing push of state to participating nodes and (b) make use of
he named-object abstraction to support advanced anycast delivery to service instances based on both network and
pplication metrics (Fig. 6). At branching locations, routers can then take informed decisions. For example, Fig. 6 shows a
ecision space scenario where given thresholds define different states that can influence how routing decision. While the
ffectiveness of the ASR approach has been proposed in our previous work in the context of cyber physical systems [45],
oupling NOVN with ASR can support a low latency and scalable solution for any service that would benefit of the locality
f edge clouds.
8
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Fig. 6. Application specific routing as an advanced routing service for the edge cloud use cases.

Fig. 7. QoS control (traffic shaping) example in NOVN.

Fig. 8. Network slicing in NOVN.

5.2. Quality of service control

Maintaining QoS is a key requirement in the MEC architecture specifically to support low-latency applications. General
QoS control mechanisms favor class-based approach where each traffic flow is assigned a QoS class identifier (QCI) to
tackle issues such as admission control, queue management, and limiting bandwidth. The QCI value is pre-configured and
cannot be adjusted dynamically during the run-time therefore lack required flexibility in the QoS control. Edge clouds are
often co-located with the existing network equipment and often have limited computation and storage. For this reason,
they are solely capable of hosting a limited amount of applications at any point in time, requiring service orchestrators to
engage in dynamic traffic management. NOVN maps the VNID to its control parameter by querying NRS at the run-time,
thereby providing a per-flow as well as per chuck based fine-grain QoS control. Fig. 7 illustrates a traffic shaping example
using NOVN. A service ID (SID) can be classified either as a part of virtual network or as a best effort traffic at the router
during run-time. The VN forwarding engine queries the NRS service plane for the traffic rate information for the VNID
and thus achieves the traffic shaping function inherently.

5.3. Network slicing

In a multi-provider network scenario, to support a variety of services, network slicing allows statistical multiplexing
of the available resources. NOVN allows a virtual router to be a part of multiple virtual networks thus enabling network
slicing implicitly. The resource provisioning to each of the network slice is similar in spirit to the QoS control mechanism
described above. Fig. 8 illustrates as example of two network slices with a common virtual router (VR1). The VNID header
lookup at the NRS provides the information about the participating virtual routers. Finally, each of the VN traffic is handled
according to its own QoS policy thereby ensuring a cleaner approach to a sliced network.

5.4. Inter-domain peering

Inter-domain connections might require additional coordination across parties involved if no overlay solution is
implemented. For this, it is arguable that the increasing reliance of ISPs on point to point agreements via Remote
9



F. Bronzino, S. Maheshwari, I. Seskar et al. Pervasive and Mobile Computing 69 (2020) 101261

6

a
f
o
p
b
G
t

Fig. 9. Click router elements graph for data plane flow.

Peering [46] and private interconnections over IXP locations via VLANs [18] would well serve this type of architecture.
Both techniques rely on the use of tag based forwarding, e.g. long distance MPLS for the first, to interconnect networks,
providing a suitable environment to map higher level VNs defined in NOVN to these channels.

. Prototype and experiment set-up

In order to understand the achievable performance and feasibility of the proposed NOVN architecture and its associated
dvanced techniques, we implement a fully working prototype of the framework. The NOVN prototype uses as its
oundation the MobilityFirst (MF) future Internet architecture [10] prototype [12]. The MF architecture is an example
f how the named-object abstraction can be integrated into an Internet network design and for this reason provides the
erfect environment to natively deploy the features at the base of NOVN. At the core of the architecture is a new name-
ased service layer which serves as the ‘‘narrow waist’’ of the protocol stack. The name-based service layer uses flat
lobally Unique Identifiers (GUIDs) of 160 bits to identify all principals or network-attached objects. Names are resolved
hrough a Global Name Resolution Service (GNRS) that provides APIs to insert and query for ⟨key, value⟩ mappings and
support hybrid routing schemes [47] that exploit availability of both names and addresses in the network header for
dynamic resolution of destination locations. A Service Identifier (SID) flag placed in network header allows network
components to be aware of different service types in order to apply different forwarding modes.

The main components of the architecture prototype are three: a DHT based NRS implementation to distribute mapping
entries, a software router implementing MF’s hybrid name/address routing logic, and a host guid based API and network
stack. The open access code repository of the prototype is available for more details [48].

6.1. Core prototype components

Name Resolution Service. This replaceable component currently supports IPv4 and MF routing enabling the possibility
of running both overlay and native virtualization solutions. We employ DMap’s [36] DHT based implementation to
evenly distribute mapping entries across all service instances. DMap’s NRS is implemented in Java and achieves the same
performance guarantees demonstrated in simulation [12]. Further, this implementation ensures that each server is able
to operate over any networking layer/technology without changes to the core code.
NOVN Routers. The software router is implemented as a set of forwarding elements and table objects within the Click
modular router [11] run at user-level. As a baseline, the router implements dynamic-binding using GNRS, hop-by-hop
reliable transport using a HOP [49] inspired protocol (by aggregation and segmentation of large chunks of data), and
storage-aware routing [47]. It integrates a large storage, via an in-memory hold buffer, to temporarily hold data blocks for
destination endpoints during short-lived disconnections or poor access connections. A particular instance of this system,
implements what we call an MF access router, a router providing access connectivity to clients.

The base router has been extended to introduce the NOVN logic (Fig. 9). Multiplexing across different delivery services
is handled via the Service ID (SID) tag available in the MF routing header (Srv Class). Encapsulation of the NOVN required
headers has been implemented exploiting extension fields in the MF network layer.

When traversing a non-VN enabled router, the SID is not recognized and the data is forwarded based on normal unicast
rules. Once packets enter the VN logic layer, the router checks whether a) the packet is intended for itself (destination
GUID) and (b) if the VN belongs to the ones currently active; the simple field base matching exploits VN native concepts
as explained in Section 3.2 allowing for a performant decision logic, as shown in the results of the next Section. VN
tables (Routing/Forwarding/ASR) are stored and quickly retrieved via a Hash Map, guaranteeing high performance; when
invoked, the routing logic (and if deployed, the ASR one) can access the information and take fast decisions.
10
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Fig. 10. A sample traffic shaper implementation in NOVN.

The control plane (not shown in the picture) is handled in similar fashion: the current design implements a Link
State like Protocol (LSP), to exchange routing information between routing instances; routers periodically generate and
distribute the aggregated cost view of each virtualized link to neighbors that, following the logic of the protocol, store
and forward the information. Path costs are extracted from the underlying unicast routing tables (Rtn Tables) via APIs.
nitialization of the logic for a given VN can be done via two different methods: either statically within the click
onfiguration files using as inject point or based on a managing protocol exposed via the Click software control interface.
Finally, the routers have been enabled with interchangeable Interface classes that can adapt to different networking

nvironments, supporting different deployment scenarios; these include: (a) native support of the MF protocols on top of
L2 network and overlay support both on top of (b) barebone IP network or (c) a full overlay solution on top of UDP.
dvanced Service Extensions. The core NOVN prototype is further extended to support QoS control and network slicing
y introducing a VNID based mapping technique. An MF chuck consists of number of packets. As shown in Fig. 10, resource
anagement is achieved by marking the incoming packets in a chunk and then classifying them according to their VNIDs.
he classified chucks are stored into a buffer which are pulled by a bandwidth shaper at a specified rate before aggregating
hem back as a chunk and sending at the output port. This simple VNID based classification and shaping technique enables
OVN with the resource provisioning and traffic shaping, and therefore aids in the network slicing.
lients. In similar fashion, the baseline client network stack and API [34] have been extended to support NOVN operations
ncluding: (a) exposure of the required API options during socket initialization (i.e. open) to (b) instantiate resources in
he network stack and (c) encapsulation of messages as required by the protocol.

.2. Overlay based VN implementation

For performance evaluation and comparison purposes, we implement an overlay based virtual network as follows.
e integrate OpenVPN [50] based tunnels on top of a barebone IP router implementation using Click [11]. Tunnels

onnecting nodes are set-up between each pair of virtual routers (VR). Upon transmission, data is encrypted, encapsulated
nd tunneled to the neighboring virtual router. An encapsulation table maps an UDP tunnel to the public IP of the adjacent
outer at the overlay virtual router. An OSPF-like (Open Shortest Path First) protocol is used for routing at the IP layer.
redefined virtual paths are set using the aforementioned tunnels between virtual routers. Finally, the VN packet is
mplemented in click with the following fields: virtual source IP, virtual destination IP, transport identifier (UDP), OpenVPN
eader, source IP, destination IP and the payload.
The named-object based VN is evaluated by running an additional Name Resolution Service, which for simplicity

e deploy using a single server. The network topology information consisting physical router connectivity, physical
o virtual router mapping, and participating VN and service identifier, is disseminated at all the routers before the
etwork bootstrap. A named-object VN packet has the following fields: source NA, destination NA, service ID, source GUID,
estination GUID, VNID, source VGUID, destination VGUID and the payload, as described in the previous sections. Each
irtual router is mapped to its physical router’s GUID whose network address is queried from the NRS during run-time.

. Performance evaluation

A combination of routers, clients, and NRS servers have been deployed on the ORBIT testbed [13]. We select 19 nodes
f the testbed and deploy different networks for the different use cases analyzed. Throughout all cases, we co-locate one
RS server with each router deployed. All nodes are interconnected via 1 Gbit Ethernet switches, creating a single L2
etwork. As the testbed provides a single L2 network, a logical split has been implemented within the click routers to
nforce the topology. We present the following evaluation results: (a) a set of micro-benchmark experiments aimed at
emonstrating the baseline computation overhead of our VN implementation against the baseline MF prototype, (b) an
nalysis of how to achieve network slicing in which different VNs can co-exist on the deployed network, (c) results on
he traffic shaping to achieve QoS control, (d) an ASR edge cloud use case deployment scenario, and (e) a comparative
nalysis of NOVN with the traditional VN deployed as an overlay network on top of the current Internet architecture.
11
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Fig. 11. Network topology used for benchmarks.

Table 1
Latency and throughput NOVN Benchmarks.
Size RTT without NOVN RTT with NOVN

64 B 7.6 ms 8.8 ms
1 MB 128.1 ms 128.1 ms

Throughput without NOVN Throughput with NOVN

64 B 14 mbps 11 mbps
1 MB 916 mbps 903 mbps

7.1. NOVN performance benchmarks

In order to understand the basic overhead introduced by running the virtual network logic on top of the baseline
rototype, two sets of benchmarks are performed: first, a latency evaluation using a ping-like application that collects
TTs for a small (64B) and a large (1 MB) chunks size; second, using a port of iperf that uses the new API and stack to
ransmit data, achievable bandwidth is estimated. For both scenarios the network shown in Fig. 11 is used, but traffic
eneration is limited to VN-2 (blue color).
atency and Throughput: Total values reported in Table 1 account for the sum of three time components: (1) the processing
ime of the software router (including potentially the VN logic); (2) the queries to the NRS (2 ms RTT from the routers to
he NRS with query results cached on the routers for 30 s); and (3) the HOP like protocol which requires the transmission
f initial and final control packets for each chunk to provide a reliable transmission on a hop-by-hop basis. For this
xperiment, RTTs for the smaller chunk size do suffer some small increase in the NOVN case due to the overhead generated
y the processing of the added logic and the additional queries to the NRS (to resolve the higher layer mappings). The
ffect of the NRS queries is limited though, as they are averaged over the number of total collected samples (1000, one
very second), even considering that a 30 s cache is quite conservative, especially for VN like scenarios where changes are
nlikely to happen in the order of seconds. The bigger size is less impacted by the additional overhead. The performance
mpact of NOVN ’s overhead on the achievable throughput is also minimally noticeable, but with increasing chunk size the
ffect is proportionally minimized. For this metric, the impact of the queries to the NRS is a lesser factor (at 1 MB, ∼113
hunks per second are transmitted and only one time every 30 s or ∼3400 chunks the NRS is queried). The decrease
n throughput has then to be attributed to the additional header and processing overhead caused by the VN logic. Even
hough these do factor for a decrease in performance, this is small enough that the evaluated scenario does not causes
oncern for the effectiveness of the design.

.2. QoS control

A major advantage inherent to the NOVN design is the possibility of performing multiplexing across different VNs by
witching traffic based on a single header field, i.e., the VNID. To test the overhead and functionality of the VN switching
echanisms in the prototype, three VNs have been deployed on the network shown in Fig. 11. Best effort & managed

raffic scenarios are evaluated without and with the QoS control mechanisms.
ulti VN Co-existence: Each traffic source (left side nodes), generates traffic at 100 Mbps. Fig. 12 shows the results
fter running a five mins. experiment without employing traffic shaping. While initial competition on the wire, causes
ome overshooting of the goal throughput, the traffic stabilizes shortly after and it is maintained until the experiment
s completed (at around 300s). The overshooting is introduced by the chunk base nature of the protocols implemented,
here a sudden arrival of large chunks (1 MB) requires time to adjust.
anaged Traffic Network Slicing: Using the topology described in Fig. 11, traffic is generated at the rate of 100 Mbps
t all three sources and managed in-network using the traffic shaper. VNID to allowed traffic rate mapping information
s updated at the start of the experiment and dynamically retrieved during the run-time by querying NRS. As shown in
ig. 13, each of the red, blue and green VNs pushed traffic up to their allowed limits of 0.5, 10 and 20 Mbps respectively.
imilar to our previous observation, while the initial competition on the wire shoots up the traffic, due to the rate limiting
mplementation in the traffic shaper, all three VN’s traffic stabilizes to reach up to their allowed capacity.
12
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Fig. 12. Multiplexing NOVN benchmark.

Fig. 13. QoS control benchmark in NOVN.

Fig. 14. ASR edge cloud use case example.

.3. ASR use case

To exemplify the implementation of the ASR concept, a closed-loop (round-trip) application has been deployed on
he network pictured in Fig. 14, where clients send requests of 10 KB each in size to a set of two servers representing a
loud service. ASR is deployed to consider in its forwarding decisions both network metrics used in the normal routing
cheme (latency and delay) and the servers load. Cloud servers loads are emulated by adding emulated delays before
ending responses of 10 KB back to the client. Server-1 has dynamic load chosen uniformly every 30 s from the set of
alues 0, 0.2, 0.4, 0.6, 0.8, representing linearly increasing delays of 0, 20, 40, 60, 80 ms. Server-2 is statically configured
o always select parameter 0.4. A 20 ms extra RTT has been added in the path to the bottom server by using tc to emulate
ifferent path distance between the servers. Servers announce their load via the ASR protocol every 2 s. Fig. 14 shows the
erformance obtained, representing the taken decisions by the ASR logic; at the bifurcation, requests are forwarded based
n a simple threshold logic, where potential destinations are divided into a decision space in which different regions have
igher priority: if there are servers with load lower than 0.5, choose the one with the best path; otherwise simply choose
he best path. This guarantees for the experiment setup that all requests are sent to a router with load lower than 0.5
apping response time to ∼70 ms.
13
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Fig. 15. Network topology used for edge cloud deployment.

Fig. 16. Response time for edge cloud deployment.

This setup has then be extended to represent a more realistic scenario as shown in Fig. 15. In this case, three clients are
deployed, connecting to three networks each equipped with a local service instance. Crossing border routers introduce
a 5 ms delay each way, replicating the cost of traversing across domains. The server loads are dynamic with the same
parameters. Each case has been run for one hour and collected results show how the combination of NOVN and ASR impact
the service response time. Fig. 16 shows the obtained results. The following should be observed: (1) up to ∼50 ms, the
difference between the two lines should be recollected to the local servers’ load variations over time (i.e. if the load is
below 50%, the local server is chosen) and should converge over a longer time; (2) the ASR impact is very noticeable above
such threshold, where 90% of requests are serviced in less than 68 ms, a more than 30% improvement from the baseline
case (where the local server is always selected).

The NOVN framework, as described in Section 3, provides a clean way to define a virtual network topology through
the use of the named-object abstraction. While using this technique it is possible to achieve the purpose of providing the
high level mechanisms that characterize the system, additional details are required to provide a better sense of how NOVN
can fully overcome the issues presented and how it could be deployed on top of the current TCP/IP Internet architecture.

7.4. Comparing NOVN with overlay VN solution

Overlay based virtual networking approaches rely upon complex packet processing at the router and the setting flags
to carry extra information such as fragmentation. These approaches increase the round trip time (RTT) of a packet in
the network and lowers data throughput, but may also fail the integrity of a tunneled packet for a larger size due to
fragmentation flag set. This is generally avoided using a no fragmentation flag which causes loss of packets which are
bigger than the MTU. Furthermore, overlay based solutions rely upon tunnels which are set up a priori. In case of a
run-time failure, the tunnel needs to be set up again.

During link failures, overlay virtual networks lose packets until the link becomes active again or the route converges,
incurring packet loss and lowering system throughput. In case of short duration link failures, the route converges to the
same path and therefore the packet loss is directly proportional to the duration of the failed link. For the permanent link
failures (equivalently, long duration link failures), the route converges to a different path and therefore the packet loss is
proportional to the sum of losses due to timer expiration and route convergence time. Due to the slow start behavior of
TCP, it is time expensive to create new tunnels in case of route change impacting throughput and delay.

In the embedded NOVN approach, network addresses are dynamically retrieved using a logically centralized geograph-
ically distributed NRS. The route is therefore resolved at the run-time by querying NRS which strictly decouples network
14
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Fig. 17. Network topology for VN comparison.

Table 2
Overhead comparison.
Packet size Overlay (RTT in ms) NOVN (RTT in ms)

64 B 6.1 7.2
1400 B 6.3 7.5
5 KB 7.9 9.6
10 KB 9.4 12.9
50 KB 13.6 17.8
100 KB 20.1 24.4
500 KB 72.4 78.5

functions from the hardware functions, shifting focus from complex packet processing to a simple packet forwarding. This
also alleviates network configuration issues as assigning a GUID to a node is as simple as declaring a variable.
VN comparison experimental set-up We deploy both, the overlay as well as named-object based VN architectures
described in Section 6.2 on a small network on ORBIT as shown in Fig. 17. Seven routers form the core network and
are connected via the Ethernet with 900 Mbps bandwidth. A simple ping application is run from the client to the server
with different packet size to compare both the approaches in terms of protocol data plane overhead and recovery time
from link failure.
Latency comparison. The round-trip delays associated with the data traversed across the network capture the encryption,
tunneling, encapsulation and any other packet processing; therefore, the RTT can be approximated as protocol overhead
for the architecture comparison. Table 2 shows round trip times (RTTs) obtained for different packets sizes for overlay
and NOVN. The ping latency is averaged over a large number of pings (>1000). We notice that NOVN experiences increased
atency compared to the results obtained by the overlay network. We attribute the added latency to the periodic NRS
ueries in case of NOVN whereas overlay network is pre-configured and the only overhead it experiences is in replacing
eaders. Moreover, the MF based solution uses 160 bits long names for objects identification, a large increase in headers
verhead compared to the other solution. Even considering these elements, NOVN still achieves close performance results
ompared to the overlay network.
ink Failure. We emulate link failures by introducing packet loss at the link between the routers R6 and R7. We analyze
wo cases: (i) 100 ms (short term failure) and (ii) 100 s (long term failure), using the RandomSample element in click
outer, sampling packets at the loss rate 1 for the specified duration. For the first case, neither of the approaches had
nough time to react to the failure and converging to a new path; both cases simply recover once the link is re-established.
acket loss observed in the overlay case is MTTR∗ rate while for NOVN there is no loss due to store and forward capability
f the router inherited from the MF architecture. In the 100 s case, the overlay approach has to wait for the routing
rotocol to re-converge to a new path and set up new VPN [51] tunnels before a client can get ping responses back
rom the destination. In contrast, NOVN reacts much faster as the next node’s network address is dynamically resolved
y querying the NRS. Fig. 18 compares the effect of link failure for both the cases. The server transmission rate is a ping
esponse to the ten 64 B packet ping requests sent by the client shown Fig. 17. The failure is introduced at time t = 35 s.
OVN recovers in about 1 s without losing any packets due to its in-network store and forward scheme. Overlay VN loses
he packets equivalent to the mean time to recover (MTTR) which is more than 5 s in this case.

. Related work

NOVN takes inspiration from within two broad categories of works: (1) virtual network designs and management
echniques and (2) software based solutions to enhance services on networks. Most recent VN designs in general span
rom overlay solutions [22,52] to lower layer integrations using tag switching [20,21]. NOVN differs from all these works
y offering a native network-layer solution based on separating names identifying VN resources from the underlying
nfrastructure. No other work has looked at this type of generalization, providing capabilities that can extend across
ultiple domains.
ASR takes inspiration from the broad variety of software enhanced solutions aimed at allowing greater control and

nteraction to application and services populating networks. SDN [35] and its extensions [44] have provided contributions

o this research area, but have been limited their scope to single domains. Active networks [53] had also been proposed
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Fig. 18. Comparing effect of link failure for overlay VN and NOVN.

as an extreme solution to the problem, allowing packets to carry instructions interpreted by the network fabric. Multi-
domain approaches have mostly focused on single specific issues, such as anycast delivery or path selection to distributed
services [26,27]. Similar to ASR, Internet standardization organizations have also introduce overlay approaches for custom
routing [32]. ASR in NOVN differs from previous work by providing a distributed and integrated solution for deploying
both advanced network control and allowing applications to influence network layer decisions. Lastly, NOVN, through the
mployed named-object abstraction, belongs to the categories of Information Centric Networking [10,54,55] and name
eparation [30,31] works.

. Conclusions

This paper presents NOVN, a novel network virtualization architecture aimed at providing a clean and logically simple
olution for deploying virtual networks. Exploiting the named-object abstraction, NOVN provides a solution that offers the
ogical simplicity of L2 network virtualization which augmented with the advanced mobile edge cloud (MEC) techniques
uch as application specific routing, network slicing and QoS control, achieves a high degree of flexibility in creating
ustomized topologies and routing of traffic in an application-aware manner. Results based on a working prototype
eployed on the ORBIT testbed demonstrate that the new framework provides an efficient realization for defining and
anaging virtual networks without compromising performance or incurring excessive control overhead. Performance
valuation of various MEC scenarios are presented and the solution is compared with the overlay based virtual networks.
esults show that NOVN provides faster path recovery and incurs no packet loss during link failure. The ASR improves
he latency performance by 30% as compared to the baseline approach for a 90 percentile response time at 68 ms. Future
ork includes evaluating ASR techniques applied to large scale edge cloud scenarios.
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