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Network management often relies on machine learning to make predictions about performance and security
from network traffic. Often, the representation of the traffic is as important as the choice of the model. The
features that the model relies on, and the representation of those features, ultimately determine model accuracy,
as well as where and whether the model can be deployed in practice. Thus, the design and evaluation of these
models ultimately requires understanding not only model accuracy but also the systems costs associated with
deploying the model in an operational network. Towards this goal, this paper develops a new framework and
system that enables a joint evaluation of both the conventional notions of machine learning performance
(e.g., model accuracy) and the systems-level costs of different representations of network traffic. We highlight
these two dimensions for two practical network management tasks, video streaming quality inference and
malware detection, to demonstrate the importance of exploring different representations to find the appropriate
operating point. We demonstrate the benefit of exploring a range of representations of network traffic and
present Traffic Refinery, a proof-of-concept implementation that both monitors network traffic at 10 Gbps
and transforms traffic in real time to produce a variety of feature representations for machine learning. Traffic
Refinery both highlights this design space and makes it possible to explore different representations for
learning, balancing systems costs related to feature extraction and model training against model accuracy.
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Fig. 1. Typical pipeline for model design in network inference.

1 INTRODUCTION
Network management tasks commonly rely on the ability to classify traffic by type or identify
important events of interest from measured network traffic. Over the past 15 years, machine
learning models have become increasingly integral to these tasks [15, 38, 46]. Training a machine
learning model from network traffic typically involves extracting a set of features that achieve
good model performance, a process that requires domain knowledge to know the features that
are most relevant to prediction, as well as how to transform those features in ways that result in
separation of classes in the underlying dataset. Figure 1 shows a typical pipeline, from measurement
to modeling: The process begins with data (e.g., a raw traffic trace, summary statistics produced
by a measurement system); features are then derived from this underlying data. The collection of
features and derived statistics is often referred to as the data representation that is used as input to
the model. Even for cases where the model itself learns the best representation based on its input
(e.g., representation learning or deep learning), the designer of the algorithm must still determine
the initial representation of the data that is provided to model.
Unfortunately, with existing network traffic measurement systems, the first three steps of this

process—collection, cleaning, and feature engineering—are often out of the pipeline designer’s
control. To date, most network management tasks that rely on machine learning from network
traffic have assumed the data to be fixed or given, typically because decisions about measuring,
sampling, aggregating, and storing network traffic data are made based on the capabilities (and
constraints) of current standards and hardware capabilities (e.g., IPFIX/NetFlow). As a result, a
model might be trained with a sampled packet trace or aggregate statistics about network traffic—
not necessarily because that data representation would result in an efficient model with good
overall performance, but rather because the decision about data collection was made well before
any modeling or prediction problems were considered.

Existing network traffic measurement capabilities capture either flow-level statistics or perform
fixed transformations on packet captures. First, flow-based monitoring collects coarse-grained
statistics (e.g., IPFIX/NetFlow or collection infrastructure such as Kentik [5] and Deepfield [4]).
These statistics are also often based on samples of the underlying traffic [23]. Conversely, packet-
level monitoring aims to capture traffic for specialized monitoring applications [3] or triggered
on-demand to capture some subset of traffic for further analysis [53]. Programmable network
hardware offers potential opportunities to explore how different data representations can improve
model performance; yet, previous work on programmable hardware and network data structures
has typically focused on efficient ways to aggregate statistics [30] (e.g., heavy hitter detection),
rather than supporting different data representations for machine learning models. In all of these
cases, decisions about data representation are made at the time of configuration or deployment,
well before the analysis takes place. Once network traffic data is collected and aggregated, it is
difficult, if not impossible, to retroactively explore a broader range of data representations that
could potentially improve model performance.
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A central premise of the work in this paper is motivating the need for additional flexibility and
awareness in the first three steps of this pipeline for network management tasks that rely on traffic
measurements. On the surface, raw packet traces would seem to be an appealing starting point: Any
network operator or researcher knows full well that raw packet traces offer maximum flexibility
to explore transformations and representations that result in the best model performance. Yet,
unfortunately, capturing raw packet traces often proves to be impractical. In large networks, raw
packet traces produce massive amounts of data introducing storage and bandwidth requirements
that are often prohibitive. Limiting the duration of a pcap collection (e.g., collecting one day’s
worth of traces) can reduce data storage requirements, but might negatively affect the accuracy of
the produced models as the limited capture may not represent network conditions at other times.
Conversely, pcaps collected in a controlled laboratory environment might produce models not
directly applicable in practice because operational networks include other traffic characteristics that
are hard to capture in a lab environment. Due to these reasons, experiments (and much past work)
that demonstrate a model’s accuracy turn out to be non-viable in practice because the systems
costs of deploying and maintaining the model are prohibitive. An operator may ultimately need to
explore costs across state, processing, storage, and latency to understand whether a given pipeline
can work in its network.
Evaluation of a machine learning model for network management tasks must also consider

the operational costs of deploying that model in practice. Such an evaluation requires exploring
not only how data representation and models affect model accuracy, but also the systems costs
associated with different representations. Sculley et al. refer to these considerations as “technical
debt” [44] and identified a number of hidden costs that contribute to building the technical debt of
ML-systems, such as: unstable sources of data, underutilized data, use of generic packages, among
others. This problem is vast and complex, and this paper does not explore all dimensions of this
problem. For example, we do not investigate practical considerations such as model training time,
model drift, the energy cost of training, model size, and many other practical considerations. In
this regard, this paper scratches the surface of systemization costs that applies to machine learning
on network traffic, which we believe deserves more consideration before machine learning can be
more widely deployed in operational networks.
To lay the groundwork for more research that considers these costs, we develop and publicly

release a systematic approach to explore the relationship between different data representations
for network traffic and (1) the resulting model performance as well as (2) their associated costs.
We present Traffic Refinery (§3), a proof-of-concept reference system implementation designed to
explore network data representations and evaluate the systems-related costs of these representations.
To facilitate exploration, Traffic Refinery implements a processing pipeline that performs passive
traffic monitoring and in-network feature transformations at traffic rates of up to 10 Gbps in
software (§4). The pipeline supports capture and real-time transformation into a variety of common
feature representations for network traffic; we have designed and exposed an API so that Traffic
Refinery can be extended to define new representations, as well. In addition to facilitating the
transformations themselves, Traffic Refinery performs profiling to quantify system costs, such as
state and compute, for each transformation, to allow researchers and operators to evaluate not only
the accuracy of a given model but the associated systems costs of the resulting representation.
We use Traffic Refinery to demonstrate the value of jointly exploring data representations for

modeling and their associated costs for two supervised learning problems in networking: video
quality inference from encrypted traffic and malware detection. We study two questions:

• How does the cost of feature representation vary with network speeds? We use Traffic Refinery
to evaluate the cost of performing different transformations on traffic in real-time in deployed
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networks across three cost metrics that directly affect the ability to collect features from network
traffic: in-use memory (i.e., state), per packet processing (i.e., compute), and data volume generated
(i.e., storage). We show that for the video quality inference models, state and storage requirements
out-pace processing requirements as traffic rates increase (§5.1.2). Conversely, processing and
storage costs dominate the systems costs for the malware detection (§5.2.2). These results suggest
that fine-grained cost analysis can lead to different choices for traffic representation depending
on different model performance requirements and network environments.

• Can systems costs be reduced without affecting model accuracy? We show that different data
transformations allow systems designers to make meaningful decisions involving systems costs
and model performance. For example, we find that state requirements can be significantly reduced
for both problems without affecting model performance (§5.1.3 and §5.2.3), providing important
opportunities for in-network reduction and aggregation.

While it is well-known that in general different data representations can both affect model accuracy
and introduce variable systems costs, network research has left this area relatively under-explored.
Our investigation both constitutes an important re-assessment of previous results and lays the
groundwork for new directions in applying machine learning to network traffic modeling and
prediction problems. From a scientific perspective, our work explores the robustness of previously
published results. From a deployment standpoint, our results also speak to systems-level deployment
considerations, and how those considerations might ultimately affect these models in practice,
something that has been often overlooked in previous work. Looking ahead, we believe that
incorporating these types of deployment costs as a primary model evaluation metric should act
as a rubric for evaluating models that rely on machine learning for prediction and inference from
network traffic. We release the source code of Traffic Refinery [12] as a reference design so that
others can build upon it.

2 JOINT EXPLORATION OF COST AND MODEL PERFORMANCE
Exploring the wide range of possible data representations can help improve model performance
within the constraints of what is feasible with current network technologies. Doing so, however,
requires a system that enables joint exploration of both systems cost and model performance. To
this end, this section highlights two important requirements needed to support exploration: (1) the
ability to flexibly define how features are extracted from traffic; and (2) the need for integrated
analysis of systems costs.

2.1 Flexible Feature Extraction
Different network inference tasks use different models, each of which may depend on a unique
set of features. Consider the task of inferring the quality of a video streaming application from
encrypted traffic (e.g., resolution). This problem is well-studied [17, 26, 31, 34]. The task has been
commonly modeled using data representations extracted from different networking layers at regular
intervals (e.g., every ten seconds). For instance, our previous work [17] grouped data representations
from different networking layers into different feature sets: Network, Transport, and Application
layer features. Network-layer features consist of lightweight information available from observing
network flows (identified by the IP/port four-tuple) and are typically available in monitoring
systems (e.g., NetFlow) [4, 5]. Transport-layer features consist of information extracted from the
TCP header, such as end-to-end latency and packet retransmissions. Such features are widely used
across the networking space but can require significant resources (e.g., memory) to collect from
large network links. Finally, application-layer metrics are those that include any feature related to
the application data that can be gathered by solely observing packet patterns (i.e., without resorting
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Fig. 2. Balancing traffic data exploration and storage cost.

to deep packet inspection). These features capture a unique behavior of the application and have
been designed specifically for this problem.

We recreate the experiment from our previous work [17] training multiple machine learning mod-
els to infer the resolution of video streaming applications over time using the three aforementioned
data representations. Figure 2a shows the precision and recall achieved by each representation. We
observe that the performance of a model trained with Network Layer features only (NetFlow in
the figure) achieves the poorest performance, which agrees with previous results. Hence, relying
solely on features offered by existing network infrastructure would have produced the worst performing
models. On the other hand, combining Network and Application features results in more than a
10% increase in both precision and recall. This example showcases how limiting available data
representations to the ones typically available from existing systems (e.g., NetFlow) can inhibit
potential gains, highlighted by the blue-shaded area in Figure 2a. This example highlights the need
for extensible data collection routines that can evolve with Internet applications and the set of
inference tasks.

2.2 Integrated System Cost Analysis
Of course, any representation is possible if packet traces are the starting point, but raw packet
capture can be prohibitive in operational networks, especially at high speeds. We demonstrate
the amount of storage required to collect traces at scale by collecting a one-hour packet capture
from a live 10 Gbps link. As shown in Figure 2b, we observe that this generates almost 300 GB of
raw data in an hour, multiple orders of magnitude more than aggregate representations such as
IPFIX/NetFlow. Limiting the capture to solely storing packet headers reduces the amount of data
generated, though not enough to make the approach practical. To compute a variety of statistics
that would not be normally available from existing systems we would require an online system
capable of avoiding the storage requirements imposed by raw packet captures.

Deploying an online system creates practical challenges caused by the volume and rate of traffic
that must be analyzed. Failing to support adequate processing rates (i.e., experiencing packet drops)
ultimately degrades the accuracy of the resulting features, potentially invalidating the models.
Fortunately, packet capture at high rates in software has become increasingly feasible due to
tools such as PF_RING [21] and DPDK [2]. Thus, in addition to exploiting the available technical
capabilities to capture traffic at high rates, the system should implement techniques to maximize
its ability to ingest traffic and lower the overhead of system processing. For example, the system
has to efficiently limit heavyweight processing associated with certain features to subsets of traffic
that are targeted by the inference problem being studied without resorting to sampling, which can
negatively impact model performance.
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{
"Name": "ServiceName",
"Filter": {

"DomainsString": ["domain.x", ...],
"Prefixes": ["10.0.0.0/18", ...]

},
"Collect": [FeatureSetA, FeatureSetB,

...],
"Emit": 10

}

Listing 1. Configuration example.

Any feature transformation will introduce systems-related costs. A network monitoring system
should make it possible to quantify the cost that such transformations impose. Thus, to explore
the space of model performance and their associated systems costs, the system should provide an
integrated mechanism to profile each feature.

3 EXPLORING DATA REPRESENTATIONS WITH TRAFFIC REFINERY
To explore network traffic feature representations and its subsequent effect on both the performance
of prediction models and collection cost, we need a way to easily collect different representations
from network traffic. To enable such exploration, we implement Traffic Refinery [12], which works
both for data representation design, helping network operators explore the accuracy-cost tradeoffs of
different data representations for an inference task; and for customized data collection in production,
whereby Traffic Refinery can be deployed online to extract custom features. Note that the goal
of Traffic Refinery is not to fully replace, or automatize, the domain knowledge driven process of
selecting feature candidates for a model. Rather, it aims to enable the model designer to explore the
impact that each feature has on the accuracy and costs of the model they are developing.
Data representation design has three steps. First, network operators or researchers define a

superset of features worth exploring for the task and configure Traffic Refinery to collect all these
features for a limited time period. Second, during this collection period, the system profiles the costs
associated with collecting each individual feature. Finally, the resulting data enables the analysis of
model accuracy versus traffic collection cost tradeoffs.
This section first describes the general packet processing pipeline of the system (Section 3.1)

and how a user can configure this pipeline to collect features specific to a given inference task
(Section 3.2). We then present how to profile the costs of features for data representation design
(Section 3.3).

3.1 Packet Processing Pipeline
Figure 3 shows an overview of Traffic Refinery. Traffic Refinery is implemented in Go [6] to exploit
performance and flexibility, as well as its built-in benchmarking tools. The system design revolves
around three guidelines: (1) Detect flows and applications of interest early in the processing pipeline
to avoid unnecessary overhead; (2) Support state-of-the-art packet processing while minimizing
the entry cost for extending which features to collect; (3) Aggregate flow statistics at regular time
intervals and store for future consumption. The pipeline has three components:
(1) a traffic categorization module responsible for associating network traffic with applications;
(2) a packet capture and processing module that collects network flow statistics and tracks their

state at line rate; moreover, this block implements a cache used to store flow state information;
and

(3) an aggregation and storagemodule that queries the flow cache to obtain features and statistics
about each traffic flow and stores higher-level features concerning the applications of interest
for later processing.
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Traffic Refinery is customizable through a configuration file written in JSON. The configuration
provides a way to tune system parameters (e.g., which interfaces to use for capture) as well as
the definitions of service classes to monitor. A service class includes three pieces of information
that establish a logical pipeline to collect the specified feature sets for each targeted service class:
(1) which flows to monitor; (2) how to represent the underlying flows in terms of features; (3) at
what time granularity features should be represented. Listing 1 shows the JSON format used.

3.1.1 Traffic Categorization
Traffic Refinery aims to minimize overhead generated by the processing and state of packets

and flows that are irrelevant for computing the features of interest. Accordingly, it is crucial
to categorize network flows based on their service early so that the packet processing pipeline
can extract features solely from relevant flows, ideally without resorting to sampling traffic. To
accurately identify the sub-portions of traffic that require treatment online without breaking
encryption or exporting private information to a remote server, Traffic Refinery implements a cache
to map remote IP addresses to services accessed by users. The map supports identifying the services
flows belong to by using one of two methods: (1) Using the domain name of the service: similarly
to the approach presented by Plonka and Barford [41], Traffic Refinery captures DNS queries and
responses and inspects the hostname in DNS queries and matches these lookups against a corpus
of regular expressions for domain names that we have derived for those corresponding services.
For example, (.+?\.)?nflxvideo\.net captures domain names corresponding to Netflix’s video
caches. (2) Using exact IP prefixes: For further flexibility, Traffic Refinery supports specifying matches
between services and IP prefixes, which assists with mapping when DNS lookups are cached or
encrypted.

Using DNS to map traffic to applications and services may prove challenging in the future, as DNS
becomes increasingly transmitted over encrypted transport (e.g., DNS-over-HTTPS [14] or DNS-
over TLS [42]). In such situations, we envision Traffic Refinery relying on two possible solutions:
(1) parse TLS handshakes for the server name indication (SNI) field in client hello messages, as this
information is available in plaintext; or (2) implement a web crawler to automatically generate an
IP-to-service mapping, a technique already implemented in production systems [4].

3.1.2 Packet Capture and Processing
The traffic categorization and packet processing modules both require access to network traffic.

To support fast (and increasing) network speeds, Traffic Refinery relies on state-of-the-art packet
capture libraries: We implement Traffic Refinery’s first two modules and integrate a packet capture
interface based on PF_RING [21] and the gopacket DecodingLayerParser library [7]. Traffic Refinery
also supports libpcap-based packet capture and replay of recorded traces.

Processing network traffic in software is more achievable than it has been in the past; yet, support-
ing passive network performance measurement involves developing new efficient algorithms and
processes for traffic collection and analysis. Traffic Refinery implements parallel traffic processing
through a pool of worker processes, allowing the system to scale capacity and take advantage of
multicore CPU architectures. We exploit flow clustering (in software or hardware depending on
the available resources) to guarantee that packets belonging to the same flow are delivered to the
same worker process, thus minimizing cross-core communication and ensuring thread safety. The
workers store the computed state in a shared, partitioned flow cache, making it available for quick
updates upon receiving new packets.

The packet processing module has two components:
State storage: Flow cache. We implement a flow cache used to store a general data structure
containing state and statistics related to a network flow. The general flow data structure allows
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1 type Packet struct {
2 // Packet 's information
3 TimeStamp int64
4 Direction int
5 IsIPv4 bool
6 ...
7 // Computed fields from headers
8 InIP string
9 OutIP string
10 IPLength int64
11 ...
12 // Pointers to memory buffers
13 Eth *layers.Ethernet
14 Ip4 *layers.IPv4
15 ...
16 }

Listing 2. The packet structure passed to the
AddPacket function.

1 func AddPacket(PacketCounter c, Packet pkt) {
2 if pkt.Direction is incoming {
3 increase c.InCounter by 1
4 increase c.InBytes by pkt.IPLength
5 } else {
6 increase c.OutCounter by 1
7 increase c.OutBytes by pkt.IPLength
8 }
9 }
10
11 func CollectFeatures(PacketCounter c) {
12 return {
13 KbpsUp: calculate average throughput ,
14 ...
15 }
16 }

Listing 3. Pseudo-code for the AddPacket and
CollectFeatures function for a packet counter.

storing different flow types, and differing underlying statistics using a single interface. Furthermore,
it includes, if applicable, an identifier to match the services the flow belongs to. This information
permits the system to determine early in the pipeline whether a given packet requires additional
processing. The current version of the system implements the cache through a horizontally parti-
tioned hash map. The cache purges entries for flows that have been idle for a configurable amount
of time. In our configuration this timeout is set to 10 minutes.
Feature extraction: Service-driven packet processing. A workers pool processes all non-DNS
packets. Each worker has a dedicated capture interface to read incoming packets. As a first step,
each worker pre-parses MAC, network, and transport headers, which yields useful information
such as the direction of the traffic flow, the protocols, and the addresses and ports of the traffic.
The system then performs additional operations on the packet depending on the service category
assigned to the packet by inspecting the flow’s service identifier in the cache. Using the information
specified by the configuration file, Traffic Refinery creates a list of feature classes to be collected for
a given flow at runtime. Upon receiving a new packet and mapping it to its service, Traffic Refinery
loops through the list and updates the required statistics.

3.1.3 Aggregation and Storage
Traffic Refinery exports high-level flow features and data representations at regular time intervals.

Using the time representation information provided in the configuration file, Traffic Refinery
initializes a timer-driven process that extracts the information of each service class at the given
time intervals. Upon firing the collection event, the system loops through the flows belonging to a
given service class and performs the required transformations (e.g., aggregation or sampling) to
produce the data representation of the class. Traffic Refinery’s packet processing module exposes
an API that provides access to the information stored in the cache. Queries can be constructed based
on either an application (e.g., Netflix), or on a given device IP address. In the current version of the
system, we implement the module to periodically query the API to dump all collected statistics for
all traffic data representations to a temporary file in the system. We then use a separate system to
periodically upload the collected information to a remote location, where it can be used as input to
models.

3.2 User-Defined Traffic Representations
The early steps of any machine learning pipeline involve designing features that could result in
good model performance. We design Traffic Refinery to facilitate the exploration of how different
representations affect model performance and collection cost. To do so, we design Traffic Refinery
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Group Features

PacketCounters throughput, packet counts
PacketTimes packet interarrivals
TCPCounters flag counters, window size, retransmissions, etc.
LatencyCounters latency, jitter

Table 1. Current common features available in Traffic Refinery.

to use convenient flow abstraction interfaces to allow for quick implementation of user-defined
collection methods for features and their aggregated statistics. Each flow data structure implements
two functions that define how to handle a packet in the latter two steps of the processing pipeline:
(1) an AddPacket function that defines how to update the flow state metrics using the pre-processed
information parsed from the packet headers; and (2) a CollectFeatures function that allows the
user to specify how to aggregate the features collected for output when the collection time interval
expires.
Implemented features are added as separate files. Traffic Refinery uses the configuration file to

obtain the list of service class definitions and the features to collect for each one of them. Upon
execution, the system uses Go’s language run-time reflection to load all available feature classes
and select the required ones based on the system configuration. The implemented functions are
then executed respectively during the packet processing step or during representation aggregation.
We detail in Section 5 how the system can be configured to flexibly collect features at deployment
time for two use cases: video quality inference and malware detection.

To exemplify how to add new features, we show in Listing 3 the pseudo-code of our implementa-
tion of the PacketCounter feature class. This collection of features, stored in the PacketCounter
data structure, keeps track of the number of packets and bytes for observed flows. To do so, the
AddPacket function uses the pre-processed information which is stored in the Packet structure
provided as input (showed in Listing 2). This structure contains information computed from the
packet headers, including: (1) general information about the packet (e.g., its receival timestamp and
whether the packet was received or sent by the interface); (2) a selected collection of pre-processed
values extracted from the packet headers (e.g., IP addresses and the IP packet length); (3) pointers to
the packet headers and payload to extract any additional information as needed. Upon triggering of
the collection interval, the system uses the structure to output throughput and packets per-second
statistics, i.e., the CollectFeatures function and the output data structure PacketCounterOutput.
The current release of the system provides a number of built-in default features commonly collected
across multiple layers of the network stack. Table 1 provides an overview of the features currently
supported.
Design considerations. We took this design approach to offer full flexibility in defining new
features to collect while also minimizing the amount of knowledge required of a user about the
inner mechanics of the system. We made several compromises in developing Traffic Refinery. First,
our design focuses on supporting per-flow statistics and output them at regular time intervals. This
approach enables the system to exploit established packet processing functions (e.g., clustering) to
improve packet processing performance. Conversely, this solution might limit a user’s ability to
implement specific types of features, such as features that require cross-flow information or those
based on events. Second, the software approach for feature calculation proposed in Traffic Refinery
might encourage a user to compute statistics that are ultimately unsustainable for an online system
deployed in an operational network. To account for this possibility, the next section discusses how
the system’s cost profiling method provides a way to quantify the cost impact that each feature
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imposes on the system. Ultimately, this analysis should provide feedback to a user in understanding
whether such features should be considered for deployment.

3.3 Cost Profiling
Traffic Refinery aims to provide an intuitive platform to evaluate the system cost effects of the user
defined data representations presented in the previous section. In particular, we build into Traffic
Refinery’s system a set of tools aimed at profiling three cost metrics: state, processing, and storage.
We highlight these metrics as they directly affect the ability of a measurement system to collect
features from network traffic, a fundamental prerequisite for all learning pipelines. While many
more cost metrics might be evaluated for a given environment (e.g., model training time, energy
cost of training, model size, etc.), they depend on deployment specifics. We leave additional cost
metrics for future work.

We use Go’s built-in benchmarking features and implement dedicated tools to profile the different
costs intrinsic to the collection process. At data representation design time, users employ the
profiling method to quickly iterate through the collection of different features in isolation and
provide a fair comparison for the three cost metrics.
State costs. We aim to collect the amount of in-use memory over time for each feature class
independently. To achieve this, we use Go’s pprof profiling tool. Using this tool, the system can
output at a desired instant a snapshot of the entire in-use memory of the system. We extract from
this snapshot the amount of memory that has been allocated by each service class at the end of
each iteration of the collection cycle, i.e., the time the aggregation and storage module gathers the
data from the cache, which corresponds to peak memory usage for each interval.
Processing costs. To evaluate the CPU usage for each feature class, we aim to monitor the amount
of time required to extract the feature information from each packet, leaving out any operation that
shares costs across all possible classes, such as processing the packet headers or reading/writing
into the cache. To do so, we build a dedicated time execution monitoring function that tracks the
execution of each AddPacket function call in isolation, collecting running statistics (i.e., mean,
median, minimum, and maximum) over time. This method is similar in spirit to Go’s built-in
benchmarking feature but allows for using raw packets captured from the network for evaluation
over longer periods of time.
Storage costs. Storage costs can be compared by observing the size of the output generated over
time during the collection process. The current version of the system stores this file in JSON format
without implementing any optimization on the representation of the extracted information. While
this solution can provide a general overview of the amount of data produced by the system, we
expect that this feature will be further optimized for space in the future.
Cost profiling analysis. Traffic Refinery supports two modes for profiling feature costs: (1)
Profiling from live traffic: in this setting the system captures traffic from a network interface and
collects statistics for a configurable time interval; and (2) Profiling using offline traffic traces: in this
setting profiling runs over recorded traffic traces, which enables fine-grained inspection of specific
traffic events (e.g., a single video streaming session) as well as repeatability and reproducibility
of results. Similarly to Go’s built-in benchmarking tools, our profiling tools run as standalone
executables. To select the sets of user-defined features (as described in Section 3.2) to profile, the
profiling tool takes as input the same system configuration file used for executing the system. Upon
execution, the system creates a dedicated measurement pipeline that collects statistics over time.
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Fig. 4. Traffic Refinery performance on the server.

4 PROTOTYPE EVALUATION
To examine the traffic processing capacity of our reference implementation of Traffic Refinery, we
deploy the system on a commodity server equipped with 16 Intel Xeon CPUs running at 2.4 GHz,
and 64 GB of memory running Ubuntu 18.04. Note that our goal with this implementation is the
development of a reference system that could be used for exploration, understanding potential
system bottlenecks, and to demontrate deployment feasibility, rather than maximizing processing
performance. As such, we decided to trade-off targeting higher data rates in exchange for flexibility
and ease of deployment. The server has a 10 GbE link that receives mirrored traffic from an
interconnect link carrying traffic for a consortium of universities.1 The link routinely reaches
nearly full capacity (e.g., roughly 9.8 Gbps) during peak times each day during the academic year.
We evaluate Traffic Refinery on the link over several days in October 2020. We use the PF_RING
packet library with zero-copy enabled in order to access packets with minimal overhead.
Figure 4a shows the number of packets processed and the number of packets dropped in 10-

second windows over the course of a few days collecting the features required to infer video quality
metrics in real time for eleven video services (more details on the use case are presented in the next
section). Traffic tends to show a sharp increase mid-day, which coincides with an increase in the
rate of packet drops. Overall, Traffic Refinery can process roughly one million packets per-second
(10M PPS per ten-second window in the figure) without loss. Average packet size plays a significant
role in the system’s capacity; for context, dShark [50] processes 3.3M PPS to process 40 Gbps by
assuming average packet size of 1,500 bytes. Given our findings we believe that performance could
be improved by: 1) reducing inter-thread competition on data access (e.g., building a separate cache
per thread); and 2) adopting tools dedicated for processing at higher speeds (e.g., coupling DPDK
with a more performant programming language). We leave such engineering tasks for future work.

We investigate the cause of packet drops to understand bottlenecks in Traffic Refinery. Packet
drops can have an unpredictable effect on model performance, depending on the feature being
considered. For example, a single packet drop may not greatly impact throughput calculations,
resulting in minimum model performance changes. Conversely, the same packet loss could cause
the failure in detecting an entire video segment, if the loss occurs at a specific point in the packet
collection. This would have a much more consistent impact on the model performance. The system’s
flow cache is a central component that is continuously updated concurrently by the workers that
process traffic. We study the ability of the system’s flow cache to update the collected entries upon
the receipt of new incoming packets. We implement benchmark tests that evaluate how many
update operations the flow cache can perform each second in isolation from the rest of the system.

1All captured traffic has been anonymized and sanitized to obfuscate personal information before being used. No sensitive
information has been stored at any point. Our research has been approved by the university’s ethics review body.
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We test two different scenarios: first, we evaluate the time to create a new entry in the cache, i.e.,
the operation performed upon the arrival of a newly seen flow. Second, we repeat the same process
but for updates to existing flows in the cache. Our results show that new inserts take one order of
magnitude more time than a simple update: roughly 6,000 nanoseconds (6 microseconds) versus
200 nanoseconds. Thus, the current flow cache implementation cannot support the creation of
more than about 150,000 new flows per second.

We confirm this result by looking at the arrival of new flows in our deployment. Figure 4b shows
the difference in the size of the flow cache between subsequent windows over the observation
period. Negative values mean that the size of the flow cache decreased from one timestamp to the
next. As shown, there are sudden spikes (e.g., greater than 100,000 new flows) in the number of
flow entries in the cache around noon on two of the days, times that correspond with increases in
packet drops. Recall that the flow cache maintains a data structure for every flow (identified by the
IP/port four-tuple). The spikes are thus a result of Traffic Refinery processing a large number of
previously unseen flows. This behavior helps explain the underlying causes for drops. Packets for
flows that are not already in the flow cache cause multiple actions: First, Traffic Refinery searches
the cache to check whether the flow already exists. Second, once it finds no entries, a new flow
object is created and placed into the cache, which requires locks to insert an entry into the cache
data structure. We believe that performance might be improved (i.e., drop rates could be lowered) by
using a lock-free cache data structure and optimizing for sudden spikes in the number of new flows.
Such optimizations are not the focus of this study, but we hope that our work lays the groundwork
for follow-up work in this area. We also envision dynamic, constraint-aware feature selection as a
logical follow-on for future work.

5 USE CASES
In this section, we use Traffic Refinery to prototype two common inference tasks: streaming video
quality inference and malware detection. For each problem, we conduct the three phases of the
data representation design: (1) definition and implementation of a superset of candidate features;
(2) feature collection and evaluation of system costs; and finally, (3) analysis of the cost-performance
tradeoffs.
This exercise not only allows us to empirically measure systems-related costs of data represen-

tation for these problems, but also to demonstrate that the flexibility we advocate for developing
network models is, in fact, achievable and required in practice. Our analysis shows that in both use
cases we can significantly lower systems costs while preserving model performance. Yet, each use
case presents different cost-performance tradeoffs: the dominant costs for video quality inference
are state and storage, whereas for malware detection they are online processing and storage. Further,
our analysis demonstrates that the ability to transform the data in different ways empowers systems
designers to take meaningful decisions at deployment time that affect both systems costs as well as
model performance.

5.1 VideoQuality Inference Analysis
Video streaming quality inference often relies on features engineered by domain experts [17, 26,
31, 34]. We evaluate the models proposed in our previous work [17].

5.1.1 Traffic Refinery Customization
As discussed in Section 2, our previous work [17] categorized useful features for video quality

inference into three groups that correspond to layers of the network stack: Network, Transport,
and Application Layer features. In their approach, features are collected at periodic time intervals
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of ten seconds. The first ten seconds are used to infer the startup time of the video, while remaining
time intervals are used to infer the ongoing resolution of the video being streamed.
We add approximately 100 lines of Go code to implement in Traffic Refinery the feature calcu-

lation functions to extract application features (i.e., VideoSegments). The function implements
the technique first presented by Vengatanathan et al. [28] who showed how video segment infor-
mation can be extracted by observing patterns in upstream traffic. In particular, this method uses
upstream requests times to break down the stream of downstream packets into video segments.
Further, we use built-in feature classes to collect network (i.e., PacketCounters) and transport
(i.e., TCPCounters) features. We use these classes to configure the feature collection for 11 video
services, including the four services studied in [17]: Netflix, YouTube, Amazon Prime Video, and
Twitch. We show a complete configuration used to collect Netflix traffic features as well as the code
implementation used to collect video segments information in Appendix A.

This use case, demonstrates how Traffic Refinery can be easily used to collect common features
(e.g., flow counters collected in NetFlow) as well as extended to collect specific features useful for a
given inference task.

5.1.2 Data Representation Costs
We evaluate system-related costs of the three classes of features used for the video quality

inference problem: network, transport, and application features. First we use Traffic Refinery’s
profiling tools to quantify the fine-grained costs imposed by tracking video streaming sessions.
To do so, we profile the per-feature state and processing costs for pre-recorded packet traces with
1,000 video streaming sessions split across four major video streaming services (Netflix, YouTube,
Amazon Prime Video, and Twitch). Then, we study the effect of collecting the different classes of
features at scale by deploying the system in a 10 Gbps interconnect link.

We find that while some features add relatively little state (i.e., memory) and long-term storage
costs, others require substantially more resources. Conversely, processing requirements are within
the same order of magnitude for all three classes of features.
State Costs. We study the state costs as the amount of in-use memory required by the system
at the end of each collection cycle—i.e., the periodic interval at which the cache is dumped into
the external storage. Figure 5a shows the cumulative distribution of memory in Bytes across all
analyzed video streaming sessions. The reported results highlight how collecting transport layer
features can heavily impact the amount of memory used by the system. In particular, collecting
transport features can require up to three orders of magnitude more memory compared to network
and application features. Transport features require historical flow information (e.g., all packets) in
contrast with network features that require solely simple counters.
Further, the application features require a median of a few hundred MB in memory on the

monitored link, with a slightly larger memory footprint than network features. At first glance, we
assumed that this additional cost was due to the need for keeping in memory the information about
video segments being streamed over the link. Upon inspection, however, we realized that streaming
protocols request few segments at a time per time slot (across the majority of time slots the number
of segments detected was lower than three), which leads to a minimal impact on memory used. We
then concluded that this discrepancy was instead due to the basic Go data structure used to store
video segments in memory, i.e., a slice, which requires extra memory to implement its functionality.
Processing Costs. Collecting features on a running system measuring real traffic provides the
ability to quantify the processing requirements for each target feature class. We represent the
processing cost as the average processing time required to extract a feature set from a captured
packet. Figure 5b shows distributions of the time required to process different feature classes.
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Fig. 5. Cost profiling for video inference models.

Collecting simple network counters requires the least processing time, followed by application and
transport features.

While there are differences among the three classes, the difference is relatively small and within
the same order of magnitude. These results highlight how all feature classes considered for video
inference are relatively lightweight in terms of processing requirements. Hence, for this particular
service class, state costs have a much larger impact than processing cost on the ability of collecting
features in an operational network.
Storage Costs. Feature retrieval at scale can generate high costs due to the need to move the
collected data out of the measurement system and to the location where it will be ingested for
processing. Figure 5c shows the amount of data produced by Traffic Refinery when collecting data
for the three feature classes relevant to the video streaming quality inference on the monitored
link. For comparison, we also include the same information for two different approaches to feature
collection: (a) pcap, which collects an entire raw packet trace; (b) NetFlow, configured using defaults
(e.g., five minutes sampling), which collects aggregated per flow data volume statistics; this roughly
corresponds to the same type of information collected by Traffic Refinery for the network layer
features (i.e., TR Net in the figure).

Storage costs follow similar trends as the state costs previously shown. This is not surprising as
the exported information is a representation of the state contained in memory. More interesting
outcomes can be observed by comparing our system output to existing systems. Raw packet traces
generate a possibly untenable amount of data and if used continuously can quickly generate
terabytes of data. This result supports our claim that collecting traces at scale and for long periods
of time quickly becomes impractical. Next, we notice that, even if not optimized, our current
implementation produces less data than NetFlow, even when exporting similar information, i.e.,
network features. While this result mostly reflects the different verbosity levels of the configurations
used for each system, it confirms that having additional flexibility in exporting additional features,
e.g., video segments information, may introduce low additional cost. In the next section, we
demonstrate that having such features available may result in significant model performance
benefits.

5.1.3 Model Performance
In this section, we study the relationship between model performance and system costs for

online video quality inference. We use previously developed models but explicitly explore how
data representation affects model performance. We focus on state-related costs (i.e., memory), as
for video quality inference, state costs mirror storage costs and the differences in processing costs
of the feature classes is not significant (Section 5.1.2). Interestingly, we find that the relationship
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Fig. 6. The relationship between features state cost and model performance for video streaming quality inference
(marker shapes identify layers used and colors identify time interval size).

between state cost and model performance is not proportional. More importantly, we find that it is
often possible to significantly reduce the state-related requirements of a model without significantly
compromising prediction performance, further bolstering the case for systems like Traffic Refinery
that allow for flexible data representations.
Representation vs. Model Performance. To understand the relationship between memory over-
head and inference accuracy, we replicate the configuration presented in our previous work [17].
We use the dataset of more than 13k sessions presented to train six inference models for the two
studied quality metrics: startup delay and resolution. For our analysis, we use the same random
forest models previously presented; in particular, random forest regression for startup delay and
random forest multi-class classifier for resolution. Further, we use the same inference interval size,
i.e., ten-second time bins. Finally, we train the models using a 80/20 train/test split and use the same
hyper parameters obtained with exhaustive grid search during the validation phase of our previous
work. Note that we do not perform further optimization on the models as our study focuses on the
relationship between model performance and system costs using previously developed models. We
hence solely rely on the model tuning performed in our previous work.

Figure 6 shows the relationship between model performance and state costs. As shown, network
features alone can provide a lightweight solution to infer both startup delay and resolution but this
yields the lowest model performance. Adding application layer features contributes to a very small
additional memory overhead. This result is particularly important for resolution where models with
video segments alone perform basically as well as combining all others. Further, adding transport
features (labeled “All” in the figure) provides limited benefits in terms of added performance—40 ms
on average lower errors for startup delay and less than 0.5% higher accuracy for resolution. Even
for startup delay where using transport features can improve the mean absolute error by a larger
margin, this comes at the cost of two orders of magnitude higher memory usage.
Time Granularity vs. Model Performance. State of the art inference techniques (i.e., our previ-
ous work [17] and Mazhar and Shafiq [35]) employ ten-second time bins to perform the prediction
of the features. This decision is justified as a good tradeoff between the amount of information that
can be gathered during each time slot, e.g., to guarantee that there is at least one video segment
download in each bin, and the granularity at which the prediction is performed. For example, small
time bins—e.g., two seconds— can have a very small memory requirement but might incur in lower
prediction performance due to the lack of historical data on the ongoing session. On the other hand,
larger time bins—e.g., 60 seconds—could benefit from the added information but would provide
results that are just an average representation of the ongoing session quality. These behaviors can
be particularly problematic for startup delay, a metric that would benefit from using exclusively the
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Fig. 7. The relationship between time granularity state costs and model performance for video quality inference
(marker shapes identify layers used and colors identify time interval size).
information of the time window during which the player is retrieving data before actually starting
the video reproduction.
We train different random forest models with increasing time bin sizes of 2, 4, 10, 30, and 60

seconds. To understand the possible memory impact of the different time bins, we use all features
(All) to train the models. In Figure 9, we observe different outcomes for the two quality metrics.
For startup delay, the results show that ten-second windows can indeed provide a good tradeoff
between memory and prediction accuracy, achieving a minimum of 70 ms better predictions than
all other time granularities. This result shows that ten seconds is an acceptable tradeoff between
gathering enough information at the beginning of a session without adding too much data from
segment downloads that happens after the video has started.
Interestingly, the results for resolution inference show that ten-second windows perform the

worst among all studied cases. This might be the product of multiple factors. In particular, the
change of the inference window size not only changes how much information is used for prediction
but it also affects the granularly of the inference, possibly modifying the underlying problem.
Among the different time bin sizes we have different extremes ranging from two-second windows,
which are about the length of the shortest video segments across all services, as well as 60-second
time windows, which could contain many video quality changes within the time slot caused by the
download of multiple video segments.

5.2 Malware Detection Analysis
In recent years, several works on traffic classification explored the application of deep learning on
raw network traffic to solve a variety of inference tasks, such as malware detection [32, 33, 47, 48]
and service identification [27]. Deep-learning based solutions differ from alternative approaches
(e.g., the one used for the video inference in the previous section) in that they do not require to
determine the initial representation of the data that is provided to the model but rather let the
model learn the best representation based on its input. In practice, this means that applying such
classifiers online requires to feed a Convolutionary Neural Network (CNN) with raw traffic data,
represented either as a normalized sequence of bytes [32, 33] or by converting the bytes into a
gray-scale image [47, 48].
The reduced complexity of these methods implies that the model and system designers’ role

is limited to three choices: (1) the size of the input data collected from the traffic (e.g., for traffic
flow classification, Wang et al. [48] use the first 784 bytes of each flow, whereas DeepMAL [33]
uses the first 100 bytes of payload of the first two packets of each flow); (2) the layers to collect
such data from (e.g., packet headers and/or payload); and finally, (3) whether to perform data
transformation (e.g., produce a PNG image from raw bytes) online or offline. In this section, we
explore the impact of these different decisions on the deployment costs and model performance.
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Fig. 8. Cost profiling for the malware detection models.
We find that depending on the cost metrics under study there may not be a single “best” data
representation, further bolstering the case for systems like Traffic Refinery that allow for flexible
data representations exploration.

5.2.1 Traffic Refinery Customization
We add approximately 150 lines of Go code to implement both transformation methods in Traffic

Refinery. For the first case, we implement a BytesCopyCounters data type that stores raw data
extracted in a bytes array. Upon receiving new packets, the AddPacket function checks how much
data is left to copy and, if any, it copies raw bytes from the correct layers into memory (i.e., headers,
payload, or both). Once the bytes array is fully formed, no more packets are treated. Finally, the
array is flushed into the output file when the collect function is invoked. For the second case, we
implement a PNGCopyCounters data type that collects raw bytes from collected packets in a similar
fashion but, also, converts the bytes into a PNG data structure when enough data has been collected.
The data structure is flushed into the output file when the collect function is invoked.

5.2.2 Data Representation Costs
Similarly to the video inference use case, we use Traffic Refinery’s profiling tools to quantify

the fine-grained costs imposed by the data collection required for deep neural network malware
detection. For this task, we use the CIC-IDS2017 dataset [45], a standard dataset used for malware
detection training and testing. The dataset consists of five days (working hours only) worth of pcap
traces that contain a mix of lab-generated benign and malware traffic, for a total of ~171k flows
distributed across the dataset. We divide the traces into ten minutes traffic sessions and profile the
state, processing, and storage costs across different configurations.

We focus our presentation on two of the three design factors that affect possible configurations:
(1) the data input size used to create the input image; and (2) whether to perform online data
transformations. We do not present results on the impact of using different parts of the packets
(i.e., headers, payload, or both) because our tests show that this configuration has relatively small
impact on the cost profiles. For all presented results we solely use information collected from packet
headers as recent work demonstrated that this is often sufficient for most inference tasks [27].
State Costs. Figure 8a shows the cumulative distribution of memory in Bytes across all analyzed
traffic sessions for different image sizes and techniques. As expected, the results follow the base
intuition that state directly relates to the size of the memory allocated for each bytes array. Further,
storing PNG images in memory causes state costs to roughly double, due to the need for allocating
memory for both the raw bytes of memory as well as for the image.
Processing Costs. Figure 8b shows distributions of the time required to process the input data
for different configurations. Storing raw bytes in memory has a small impact on processing time,
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Fig. 9. The relationship between image size, processing method, and model performance for malware detection
(marker shapes identify the method used and colors identify image size).

especially compared to the online creation of PNG images (a two orders of magnitude larger
median). This behavior is expected since generating PNG images requires processing raw bytes
through multiple filtering and compression stages [22].
Note that in this use case, most of the processing happens within the first few packets of each

flow, which is the number of packets needed to achieve the desired input size for the CNN model.
For this reason, flow size greatly impacts the average packet processing time where the majority
of packets of a short flow are retained for processing, whereas the majority of packets of a large
flow are not retained, and thus have negligible processing cost. To quantify this, we compute the
average processing time for one session of the dataset while dividing encountered flows based
on their size, i.e., in terms of the number of packets that belong to the flow. For example, small
flows (i.e., five packets or less) have an average processing time of 13,060 ns for the 28x28 PNG
transformation case. In contrast, the average processing time for large flows (100 packets or more)
is 335 ns. We observe similar results for all configurations.
Storage Costs. Figure 8c shows the cumulative amount of data produced by Traffic Refinery when
collecting data for different configurations over the entire dataset. Interestingly, while for small
image sizes (e.g., 10x10) PNG encoding generates higher volumes of data, for larger ones (e.g., 28x28)
it can save up to ~20% of total storage when compared to saving in raw bytes. This reduction happens
thanks to the compression algorithms employed during the PNG encoding process. Compression is
more effective when images contain solely packet headers, as multiple fields repeat across packets.
This observation suggests that depending on the configuration employed in the system deployment,
different strategies might be adopted regarding where to transform raw bytes into images.

5.2.3 Model Performance
To understand the relationship between costs and inference accuracy, we use the ~171k flows

contained in the CIC-IDS2017 dataset [45] to train a CNN to classify traffic flows as either benign
or malware. We follow the approach of Wang et al. [48] by converting the sequence of bytes
extracted into gray image PNGs before feeding them to the CNN; hence, we refer to the size of the
sequence of bytes as the image size. We train and evaluate using a 80/20 split 15 models in total
using different configurations for image size (6x6, 10x10, 16x16, 20x20, and 28x28). Similarly to
Section 5.1.3, we focus on solely re-using the original CNN architecture released by the authors
on the project page [1] and train models using the layers of the network stack used to extract the
sequence of bytes (header-fields only, payload only, or header-fields and payload). We observe that
using payload only yields the lowest F1 score, while the other two configurations yield similar
results (within a 3% F1 score difference). Given these small differences, we focus the remainder of
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this section on results varying configuration sizes alone. We perform the cost-performance analysis
on a test set of 19k flows.
Representation vs. Model performance.We explore the relationship between image size and
inference performance. Figure 9a presents the F1 score obtained as we vary the image size. We
present results solely for raw bytes, as F1 scores and cost trends are similar between the two
methods. Image size has a clear impact on the model performance and the associated memory cost.
The F1 score improves as the image size increases. However, this improvement flattens as the image
size increases from a 20x20 to 28x28, whereas the induced cost in terms of memory cost maintained
per-flow doubles. This result supports the need to explore the performance-cost relationship, as
maintaining more information does not always lead to higher performance.
Following the results obtained in the previous section, we explore whether different configura-

tions can lead to different tradeoffs and, consequently, different deployment strategies. Figure 9b
shows the storage costs in terms of average storage per flow generated against the average process-
ing time for different configurations. While processing times are consistently orders of magnitude
higher when the PNG generation is integrated within the processing pipeline, storage costs have
the opposite trend for larger image configurations, which are also the best performing ones. This
result suggests that while converting an image can be computationally unfeasible under certain
deployment settings, it might be preferable to perform it online for scenarios where storage is a
major constraint.

6 RELATEDWORK
Machine learning models have become integral for solving many network management tasks [15,
38, 46], from performance inference to security. Collecting input data to build models for network
management tasks can be typically achieved with passive network monitoring tools, such as packet
captures (e.g., libpcap [10] and its derivative applications Wireshark [39] and Tshark [11]) or
flow captures (e.g., NetFlow [18], IPFIX [19]). Unfortunately, this set of network monitoring tools
inhibits model designers from exploring the space of possible data representations. On one hand,
packet captures generate a massive volume of data which makes them a none-viable approach
for large networks. On the other, flow captures produce statistical information that are too coarse
grained to enable full exploration of all possible data representations. Similarly, streaming analytics
platforms [13, 20, 25, 37, 52] and algorithms (e.g., “sketches”) [29, 30, 49, 51] allow operators to
express queries on streaming traffic data but they are primarily designed to collect low-level
statistics on a backbone router or switch, or a programmable datacenter switch, which operate at
very high speeds. As such, they typically support a more limited set of queries that are constrained
by the hardware they are designed to support.

To obviate to the limitations of packet capture tools at scale, dShark [50] implements a distributed
computing engine for processing distributed network traces, at scale, in the data center. As in
Traffic Refinery, dShark offers a programming interface that permits (1) declaring groups of packet
summaries that have similar properties and (2) defining queries that operate on such packets. Traffic
Refinery differs in its design as it focuses on transformations as input to machine learning models.
Conversely, dShark focuses its design on multi-point collection and transformations required for
general diagnosis. Further, Traffic Refinery focuses on helping model designers evaluate both model
accuracy and systems-related costs associated with data collection.

Advanced network monitoring and analysis tools such as Tstat [24, 36], Bro [40], and Snort [43]
are closest in spirit to Traffic Refinery in that they have the goal of capturing network traffic and
executing transformations on the data for later use. Tstat is an open source passive monitoring
tool that can monitor network traffic and output logs, statistics, and histograms with different
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granularities: per-packet, per-flow, or aggregated. Bro and Snort are network intrusion detection
systems that rely on regular expressions to identify the subset of packets to inspect and execute
specific tasks based on the class of traffic. Ultimately, these tools would need to be adapted to achieve
custom feature representation, data representation exploration, and profiling data collection costs.
Some commercial products apply machine learning to network traffic (e.g., Nokia’s Traffica [9],
Deepfield [4], NIKSUN’s NetCVR [8]); these approaches are are proprietary and address a specific
problem (e.g., customer support). On the other hand, Traffic Refinery is open-source, and permits
jointly evaluating model performance and features collection costs at design time.

Recent work has also considered the costs associated with ML-systems [16, 17, 44]. Our previous
work [17] addressed the problem of inferring the quality of video streaming applications from
encrypted traffic and classified the possible set of features based on their corresponding layer in the
network stack. This categorization enabled us to logically reason about the cost associated with each
features sets. The observations about the tradeoffs between model accuracy and systems costs for a
specific problem motivated us to explore this problem in general. Sculley et al., [44] and Breck et
al. [16] investigated the hidden “technical debt” that incurs during the development and deployment
of ML systems; the authors discuss system-level factors that increase the maintenance costs of
real-world ML systems over time (e.g., unstable or underutilized data, dependencies on proprietary
packages, entanglement of input signals, to name a few). Traffic Refinery builds on this work,
developing techniques to explore and mitigate technical debt associated with data representation.

7 CONCLUSION
This paper introduces Traffic Refinery, which permits consideration of both model accuracy and
the systems-related costs of machine learning models trained on network traffic representations
to make predictions concerning performance and security. We show the need for exploring more
flexible representations first by showing that today’s default representations result in lower model
accuracy. We present the design and implementation of Traffic Refinery and apply it to two use case
studies: video quality performance inference and malware detection. This work has demonstrated
both the need and the potential for exploring how different data representations can affect model
accuracy, laying the groundwork for future work along multiple avenues, including automated
exploration of data representations, systems-level optimizations to improve traffic processing
capabilities and rates, and follow-up work that considers the design of processing hardware in
concert with the need for specific data representations that result in high model accuracy across a
range of inference problems. To enable the community to explore these benefits on a wider range of
problems, we have both released Traffic Refinery as open-source software, as well as the evaluation
in this paper.
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A VIDEO QUALITY INFERENCE CONFIGURATION DETAILS
This section provides additional details regarding the configuration and implementation in Traffic
Refinery of the video quality inference use case.
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A.1 Configuration
Listing 4 shows a complete configuration used to collect Netflix traffic features. The configuration
includes filters for known Netflix domains, as well Netflix owned IP network prefixes. Further,
the configuration instructs Traffic Refinery to collect the features for the three different classes
described in Section 5, i.e., PacketCounters, TCPCounters, and VideoSegments. Finally, the statistics
produced from these features are collected at ten seconds intervals.

1 {
2 "Name": "Netflix",
3 "Filter": {
4 "DomainsString": ["netflix.com","nflxvideo.net","nflximg.net","nflxext.com","nflximg.com",

"nflxso.net"],
5 "Prefixes": "23.246.0.0/18","37.77.184.0/21","45.57.0.0/17","64.120.128.0/17","66.197.128.

0/17","108.175.32.0/20","185.2.220.0/22","185.9.188.0/22","192.173.64.0/18","198.38.9
6.0/19","198.45.48.0/20","208.75.79.0/24", "2620:10c:7000::/44","2a00:86c0::/32"]

6 },
7 "Collect": [PacketCounters, TCPCounters, VideoSegments],
8 "Emit": 10
9 }

Listing 4. Configuration to capture video features for Netflix.

A.2 Implementation
Listing 5 shows the AddPacket implementation used to collect video segments information for
the video quality inference use case. The function implements the technique first presented by
Vengatanathan et al. [28] who showed how video segment information can be extracted by observing
patterns in upstream traffic. In particular, this method uses upstream requests times to break down
the stream of downstream packets into video segments.
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1 // VideoSegment is used to keep track of segments in download
2 type VideoSegment struct {
3 Len int64
4 Seq int64
5 TsStart int64
6 TsEnd int64
7 LastPkt int64
8 DownPkts int64
9 DonwBytes int64
10 MaxDSeq int64
11 }
12
13 // VideoSegments is the flow stats structure used to store segments information
14 type VideoSegments struct {
15 CompleteSegments [] VideoSegment
16 RunningSegment VideoSegment
17 }
18
19 const (
20 // Minimum length to determine when a QUIC upstream packet contains payload
21 QUICHeaderLen = 100
22 )
23
24 // AddPacket updates the flow states based on the packet pkt
25 func (vf *VideoSegments) AddPacket(pkt *network.Packet) error {
26 if pkt.Dir == network.TrafficOut {
27 if (pkt.IsTCP && pkt.DataLength > 0) || (!pkt.IsTCP && pkt.DataLength > QUICHeaderLen) {
28 if vf.RunningSegment.TsStart != 0 && vf.RunningSegment.DownPkts > 0 {
29 vf.RunningSegment.TsEnd = vf.RunningSegment.LastPkt
30 vf.CompleteSegments = append(vf.CompleteSegments , vf.RunningSegment)
31 }
32 vf.RunningSegment = VideoSegment{Len: int64(pkt.Length), TsStart: pkt.TStamp , Seq: int64

(pkt.Tcp.Seq)}
33 }
34 } else if pkt.DataLength > 0 {
35 vf.RunningSegment.DownPkts ++
36 vf.RunningSegment.DonwBytes += int64(pkt.DataLength)
37 if int64(pkt.Tcp.Seq) > vf.RunningSegment.MaxDSeq {
38 vf.RunningSegment.MaxDSeq = int64(pkt.Tcp.Seq)
39 }
40 if pkt.TStamp > vf.RunningSegment.TsEnd {
41 vf.RunningSegment.LastPkt = pkt.TStamp
42 }
43 }
44 return nil
45 }

Listing 5. Implementing the VideoSegments counters
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