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Despite significant investments in access network infrastructure, universal access to high-quality Internet
connectivity remains a challenge. Policymakers often rely on large-scale, crowdsourced measurement datasets
to assess the distribution of access network performance across geographic areas. These decisions typically
rest on the assumption that Internet performance is uniformly distributed within predefined social boundaries,
such as zip codes, census tracts, or neighborhood units. However, this assumption may not be valid for two
reasons: (1) crowdsourced measurements often exhibit non-uniform sampling densities within geographic
areas; and (2) predefined social boundaries may not align with the actual boundaries of Internet infrastructure.

In this paper, we present a spatial analysis on crowdsourced datasets for constructing stable boundaries for
sampling Internet performance. We hypothesize that greater stability in sampling boundaries will reflect the
true nature of Internet performance disparities than misleading patterns observed as a result of data sampling
variations. We apply and evaluate a series of statistical techniques to: (1) aggregate Internet performance
over geographic regions; (2) overlay interpolated maps with various sampling unit choices; and (3) spatially
cluster boundary units to identify contiguous areas with similar performance characteristics. We assess the
effectiveness of the techniques we apply by comparing the similarity of the resulting boundaries for monthly
samples drawn from the dataset. Our evaluation shows that the combination of techniques we apply achieves
higher similarity compared to directly calculating central measures of network metrics over census tracts or
neighborhood boundaries. These findings underscore the important role of spatial modeling in accurately
assessing and optimizing the distribution of Internet performance, which can better inform policy, network
operations, and long-term planning decisions.
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1 Introduction

Measuring the performance of Internet access networks is critical for characterizing the quality of
service that ISPs deliver to users [10] and for identifying discrepancies in Internet performance
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in both urban and rural areas [25, 55]. Over the past few decades, there have been significant
advancements in measuring access network performance, both in terms of novel measurement
infrastructure [23, 58] and analysis techniques [6, 47, 59, 60]. These advances have primarily focused
on measuring the performance of a single access link, using metrics such as throughput, latency,
jitter, and packet loss. The Measurement Lab (M-Lab) [29] and Ookla Speedtest [36] datasets
are currently widely used for understanding Internet performance of an access link [11]. Their
increasing prevalence has also enabled researchers to use these datasets to ask a broader set of
questions about Internet performance across an ISP or a region [4, 17, 35, 42]. In particular, there
has been significant recent interest in understanding the distribution of Internet performance across
different geographies [10, 30, 37, 52], especially for specific social and policy-related inquiries.
Yet, utilizing these crowdsourced measurements to characterize Internet performance across

a geographic region introduces new challenges, given the nature of their data. Most notably,
crowdsourced datasets are self-selected, both in time and in space. Both the Ookla and M-Lab
datasets generate crowdsourced “point" measurements from a subset of Internet users across differ-
ent geographies. These measurements, often irregularly concentrated over space, are performed
whenever a user decides to run a speed test. Consequently, these data points reflect only a small,
non-uniform fragment of the overall user base and geographic area, posing significant challenges
for a comprehensive analysis. Yet, both policy and operational decisions affecting a geographic
region rely on applying robust spatial analysis techniques to these small, self-selected samples to
make generalizations about Internet performance for the entire resident population across that
respective region.
Spatial analysis can potentially transform these scattered data points into cohesive insights,

identifying patterns and trends that are not immediately apparent. One significant challenge
to this approach is identifying geographic sampling boundaries for Internet performance and
determining methods to summarize these point measurements over space. Additionally, individual
measurements can be significantly noisy due to various factors such as testing infrastructure, access
media, and the client’s hardware or software platform [31, 40]. Spatial de-noising and aggregation
of these measurements is, therefore, critical for drawing meaningful conclusions about network
performance over specific geographies. Analysis based on such de-noised datasets, on the other
hand, can ultimately help pinpoint areas truly needing further infrastructure investments.

Prior work on applying spatial analysis to Internet measurements has taken a different approach,
treating spatial boundaries as given and applying aggregation techniques within these pre-defined
boundaries. For example, previous work has attempted to characterize Internet performance over
conventional boundaries such as zip codes, census tracts, or neighborhood units [19, 25, 38, 47, 50].
An important conclusion from previous work is that there is often significant variation in Internet
performance over these boundaries [50]; previous work has suggested that such regions need
additional attention or policy intervention. However, these approaches suffer from a few important
limitations. First, the use of aggregate measures such as mean, median and inter-quantile range (IQR)
[38, 50] on point measurements may lead to inaccurate conclusions across a region, particularly
when the region exhibits high variability or is poorly sampled. For example, measurements in
pre-defined regions are often clustered in some portions of the space and dispersed in others [25].
Thus, any aggregate measures calculated over irregularly clustered data may overrepresent densely
sampled areas.

Second, to our knowledge, no previous work has assessed the accuracy of previous techniques [19,
25] in summarizing Internet performance over a pre-defined geography. This may prevent regulators
and ISPs from adopting the most effective aggregation techniques for their analyses. Finally,
correlating Internet performance with population measures such as median income and population
density [19, 38, 47] using existing social boundaries may be inappropriate due to imperfect
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alignment with infrastructure boundaries. A single social boundary may encompass multiple areas
with heterogeneous Internet infrastructure, potentially leading to misleading correlations. Simply
put, there is no reason to expect that Internet performance should be spatially aggregated along
human-defined boundaries that have nothing to do with the Internet itself. This paper is the
first to explore and evaluate alternate spatial clustering approaches that more accurately reflect
relationships in the underlying Internet measurement data.
Our work addresses these concerns by applying a new combination of statistical techniques to

aggregate point measurements over a geography and discover stable sampling boundaries, that
is, boundaries that show less variability when subject to variations in the underlying data. We
hypothesize that optimizing for stability will make it easier to compare data across different regions,
time periods, and longitudinal studies. With consistent boundaries, we expect reduced influence of
variability in the underlying data, which is likely to reflect true differences rather than artifacts
of boundary shifts. This consistency is critical for accurate spatial analysis, as stable geographic
boundaries will enable researchers, operators, policymakers, and others to track changes over time,
compare different geographic areas, and conduct longitudinal studies with greater confidence in
outcomes.
The solution we develop comprises three steps. We first use and compare prior techniques to

interpolate Internet performance to synthetic, out-of-sample locations for areas that are other-
wise unsampled in crowdsourced datasets. Second, we use this capability to summarize latency
within small, polygonal tessellations of varying resolutions, census tracts, as well as neighborhood
boundaries within a large US city. Finally, we cluster these smaller units to discover the edges
of sampling boundaries. We focus on latency because this metric is increasingly critical to user
quality of experience for latency-sensitive applications, such as Web browsing, interactive video,
and gaming; latency is also an important differentiator between conventional fixed-line ISPs and
emerging fixed 5G providers and is thus an important metric to study. Although we focus on this
single metric for this paper, as our focus is on applying the spatial analysis techniques themselves,
we expect that the techniques that we develop are broadly applicable across other metrics.

To evaluate the quality of the resulting clusters, we measure the similarity between boundaries
using the Adjusted Rand Index (ARI) [56] for monthly samples drawn from the interpolated dataset.
We show that these techniques achieve a median pairwise ARI score of 0.59 (on a scale of -1 to 1),
which provides a 0.39 gain over computing raw averages for census tract boundaries. An ARI score
of 0.59 indicates a moderate to strong agreement between the clustering results for independent
monthly fits, demonstrating that the clusterings capture significant spatial structure in the data.
Our work makes the following contributions:

• We develop an end-to-end analysis pipeline to construct stable measurement-driven boundaries
for sampling Internet performance over a large US city . Our boundaries show consistency
across monthly samples drawn from the same dataset, up to an Adjusted Rand Index of 0.59.

• We demonstrate how and when ISPs and regulators can use our techniques to identify areas
with similar latency characteristics from a given sample of measurement data. For instance,
we show that using the 95𝑡ℎ percentile of latency for spatial aggregation yields more stable
clusters than using the 10𝑡ℎ , when homogenous clusters covering small geographic areas are
desirable.

• We find that boundaries constructed from 17-month-long, ISP-specific data samples do not
show significant similarity between ISPs. This suggests that the FCC should consider releasing
ISP-specific representations of Internet performance for greater transparency.

• While network operators may deploy their own measurement infrastructures, our approach
offers significant advantages by utilizing crowdsourced data, allowing coverage from multiple
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real-world vantage points in a cost-effective manner. We release our source code for construct-
ing these boundaries, enabling the research community, policymakers, and ISPs to use it in
their analyses [53].

2 Background

We describe processes for summarizing Internet performance within a geography; then, we dis-
cuss spatial interpolation and clustering techniques for identifying boundaries for data across a
geography that could ultimately be applied to Internet performance measurements.
2.1 Sampling Internet Performance in a Region: Two Approaches
Discovering boundaries for sampling Internet performance in a region can be done with two
possible approaches: Targeted data collection within a region, and statistical interpolation of
existing, crowdsourced data.
The first approach involves collecting data from ISPs and aligning sampling boundaries with

coverage maps that are regularly updated by the FCC [18]. The accuracy of these maps has recently
come under scrutiny [57], which, in the United States, has given rise to the Broadband Equity
Access and Deployment (BEAD) program’s Challenge process [32]. The BEAD Challenge process
is designed to allocate federal funding for broadband infrastructure projects across the United
States, particularly in underserved regions. To enhance broadband availability maps across the
country, participants in this process are required to submit accurate coverage data by running
local measurement campaigns. The challenge process is ongoing [61], with states and territories
submitting their data to the National Telecommunications and Information Administration (NTIA)
for review. Creating accurate coverage maps is a future objective that involves extensive regulatory
considerations.
An alternative approach is to analyze the statistical distribution of existing crowdsourced mea-

surement data from speed test providers such as Ookla or M-Lab. A key challenge to this approach is
the under-representation of areas where users are less likely to conduct speed tests. It is thus impor-
tant to apply post-collection analysis techniques that accurately characterize Internet performance
in sparsely sampled areas.
2.2 Spatial Interpolation and Clustering of Crowdsourced Measurements
In this work, we adopt the second approach. To address the challenge of data sparsity in crowd-
sourced measurements, we apply and evaluate spatial interpolation techniques in the context of
Internet measurement data. We then explore the use of a spatial clustering technique to identify
geographic boundaries for sampling Internet performance, given this interpolated data. In this
section, we provide an overview of relevant spatial statistics literature.
2.2.1 Spatial Interpolation. There are two types of interpolation techniques: deterministic and
stochastic. Deterministic techniques make mathematical assumptions about the spatial process
to predict the target variable without incorporating randomness in the process. Examples of
deterministic techniques include Inverse Distance Weighting (IDW) [54], LOESS [9], and Self-
tuning Bandwidth in Kernel Regression (STBKR) [25]. While Kriging [12] is often considered
deterministic in application, it is based on a stochastic model and can provide uncertainty estimates,
making it somewhat of a hybrid technique.
Stochastic techniques, on the other hand, incorporate randomness and statistical properties

of the spatial data to yield predictions along with uncertainty estimates at each location. These
techniques are more appropriate when there is strong spatial dependence in the underlying data.
Examples of stochastic techniques include Gaussian processes [1], Random Forests [48], and Neural
networks [46]. Gaussian processes model spatial data as a collection of random variables, where
the covariance between any two variables is a function of the distance between them. Random
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forests are stochastic due to the randomization involved in their construction procedure, while the
stochasticity in neural networks stems from weight initialization and gradient descent process.

In the context of crowdsourced network data, we argue that the noise introduced by factors such
as Wi-Fi [51] and access equipment [59] may weaken spatial auto-correlation between neighboring
measurements. This can make deterministic techniques more suitable, as they do not rely on
the statistical properties of the data as much as stochastic techniques. In this paper, we thus use
three deterministic techniques—IDW, LOESS, and STBKR—for comparison and design an analysis
pipeline that can be integrated with any spatial interpolation method. Exploration of stochastic
techniques for interpolating Internet measurement data is a ripe avenue for future work.
2.2.2 Spatial Clustering & Regionalization. Spatial clustering involves the process of grouping
similar data points based on their spatial proximity, or sometimes another attribute of interest.
Common spatial clustering algorithms include K-Means, DBSCAN, and Hierarchical Clustering.
The output of applying these algorithms to spatial data is a set of clusters, which may or may
not be contiguous in space. A specific form of spatial clustering is regionalization, also known as
spatially constrained clustering. Clusters formed using regionalization are contiguous in space.
Common regionalization algorithms include the Automatic Zoning Procedure (AZP) [2], the Max-P
algorithm [13], and Spatial ‘K’luster Analysis by Tree Edge Removal (SKATER) [3]. In this work,
we consider the use of regionalization in identifying areas with similar Internet performance in a
citywide geography.
Our analysis is limited to regionalization techniques because of our prior assumptions about

Internet infrastructure. Internet infrastructure is often laid out hierarchically in contiguous regions,
with local networks aggregating into regional, and ultimately into core networks [20]. SKATER
uses a tree-based methodology, under which it tries to hierarchically merge similar spatial units.
Depending on the policy or other objectives, the number of clusters parameter in SKATER can
be adjusted to identify how local clusters are merged into regional or city-level clusters. This
characteristic makes SKATER a good fit for analyzing Internet performance data.

3 Method

This section describes our analysis method. We first analyze latency measurements from the Ookla
dataset to discover statistical boundaries for sampling Internet performance in a large US city.
We then describe the data preprocessing steps that we applied to the initial sample of Ookla
measurements to arrive at the dataset that we use for our analysis in this paper. This preprocessing
ensures that our interpolation and clustering analyses are least affected by noise originating from a
variety of factors that could distort the sample, such as VPN connections (which can artificially
inflate latency) and inaccurate geolocation (which can create outliers that do not correspond to
spatial properties in the dataset). Given the dimensionality of the dataset, there can be considerable
variations in sample selection methods for interpolation and clustering. Our approach is designed
to ensure that our results are reasonably robust to these variations. Finally, we describe our analysis
pipeline, which involves spatial interpolation to construct a uniform surface model of latency values,
followed by regionalization to identify contiguous regions with similar latency characteristics.
3.1 Scope of Analysis

Dataset: 1 We use a proprietary Ookla dataset for our analysis as Ookla provides the largest
crowdsourced measurement dataset for access network performance in the present day. As opposed
to the M-Lab dataset, Ookla provides access to a greater number of point measurements with high
quality geolocations, which is crucial for spatial analysis. Ookla uses a combination of GPS and
IP geolocation to triangulate a user. We found a lack of availability of an accuracy measure for
1Access to the Ookla dataset used in this paper can be obtained from https://www.ookla.com/speedtest-intelligence
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Preprocessing Step Number of Samples Retained

Measurements for Chicago 5,924,004
Non-VPN Measurements 5,266,797
Auto-selected Server Measurements 5,005,881
GPS-only Measurements 891,431

Table 1. Summary of the filtering steps applied to the initial sample of Ookla measurements.

the geolocated measurements, which renders these measurements unreliable for a high-resolution
spatial analysis. So, we choose to focus on GPS geolocated measurements. We analyze this dataset
for fixed line ISPs because these ISPs are likely to provide a more stable and consistent service
quality compared to mobile ISPs, which is desirable for spatial analysis. Finally, we conduct our
analyses for the city of Chicago because (1) it provides the second-largest overall sample size at a
city level, and (2) it is a city with a well documented history of measurement sampling bias across
its subdivisions [47, 50].
Performance metric: We use latency for spatial analysis due to its strong correlation with
geographic distance and its effectiveness as a proxy for end-user quality of experience (QoE),
compared to metrics like throughput or packet loss [7]. Higher latency often results in increased
buffering for real-time applications such as video streaming, conferencing, and online gaming.
Additionally, latency allows for comparisons across different access technologies like DSL, Fiber,
and Cable. In contrast, throughput can be influenced by subscription tiers, local bottlenecks, and
server capacity, making it less suitable for spatial analysis. Packet loss, being more sporadic and
prone to getting influenced by transient issues like network congestion, may not exhibit clear
spatial patterns. Ultimately, analyzing latency can help network operators and regulators pinpoint
regions with poor user satisfaction and guide targeted policy interventions to enhance Internet
quality.
3.2 Data Preprocessing
From a vast US-wide dataset, we focus on measurements that originated from Chicago because this
city provided a large sample size, has a rich set of demographics, and there is evidence for consider-
able sampling bias across its subdivisions. Next, we exclude measurements that are conducted over
a VPN connection. We do so to ensure that only the measurements conducted over the user’s home
network are considered. VPNs can introduce additional latency and may not be representative of
the user’s actual experience. Next, we filter out measurements conducted against servers that are
not auto-selected by Ookla to conduct the speed test. We exclude these measurements to ensure
that the latency being analyzed is representative of typical latency experienced by user-facing
applications.

Most Content Delivery Networks (CDNs) tend to deploy their content caches close to end users
[21] for achieving low latency. Ookla defaults to nearby servers based on ping results for multiple
servers, ensuring that the selected server is the closest to the user. Using an auto-selected server
thus ensures that our analysis is not biased by the user’s choice of a distant server. Finally, we
exclude all IP geolocated measurements due to their lack of reliability for high resolution spatial
analysis. GeoIP measurements are expected to yield high location errors, which could skew our
findings. Though GPS is also prone to errors, we found in our sample that a large proportion of
GPS locations (87.4%) were within a 460-meter radius of the true location. 460 meters is the size of a
resolution-8 hexagon in the H3 tessellation system [15], which we use for our analysis in Section 5.
As an additional consideration, we analyze the age of GPS locations in the final sample. Across
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Descriptive Value

Measurement Duration Jan 2022 – Jun 2023
# Measurements 891,431
# distinct ISPs 799
# distinct vantage points (VP) 133,427
Median # samples per VP 2
# target servers 909
# hexagonal cells 899
# cells with lower than average sample size (sparse cells) 643
Average # measurements per cell per month 66.15

Table 2. Basic descriptives of the final sample of Ookla measurements.

Original Data 
Distribution

Interpolate at 
regular grid 

spacing

Overlay 
with 

Hexagons

Aggregate 
over each 

cell

Cluster

Fig. 1. Overview of our analysis pipeline. First, we construct an interpolated map of the region.
Then, we use this map to perform spatial clustering.

our 17-month sample, we found the 95𝑡ℎ percentile location age to be about 63 seconds across all
measurements, indicating that most locations are reasonably recent.
Table 1 summarizes the filtering steps used to build our analytic sample. Most reduction in

the dataset size occurs at the initial filtering steps, which is expected because we are focusing
on a specific geography. We believe that the final sample is representative of the population of
users for multiple ISPs in a large US city, and is thus suitable for our analysis. We compare the
quality of boundaries between ISPs in Section 6. Basic descriptive statistics for the final sample are
summarized in Table 2.
3.3 Analysis Approach
Given the unreliability of current FCC coverage maps, our analysis aims to establish statistical
sampling boundaries for latency in Chicago. With latency measurements likely to be unevenly
distributed across the geography, our first step is to develop a uniform surface model of latency
values. This model allows us to estimate latency at unsampled locations and ensures that our
conclusions are not biased by uneven sampling densities. We achieve this by applying spatial
interpolation techniques.
We first evaluate the performance of three interpolation methods by predicting latency at in-

sample locations. Then, using one of the methods, we predict latency at regularly spaced points
on the map, which we further overlay with different boundary unit choices. Finally, we use the
SKATER regionalization algorithm, which preserves spatial contiguity, to identify regions with
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similar latency characteristics. Figure 1 summarizes our pipeline and the analysis goals. We describe
key aspects of this pipeline in detail below.
Interpolation at regular grid spacing. We used an 80-20 split of the dataset to evaluate the
chosen techniques across the city’s geography. Due to the dataset’s large size, we fit each model
on monthly splits, resulting in 17 different fits per interpolation method parameter choice. Our
evaluation ensures that all measurements from a single user appear exclusively in either the training
set or the test set to prevent overfitting. Including a user’s measurements in both sets could lead
models to learn the user’s latency distribution rather than the underlying spatial patterns. By
treating each user independently, we assess how well the models generalize to unsampled users
at a given location. Upon selecting a suitable interpolation method, we then predict latency at
regularly spaced points across the city to construct a uniform surface model of latency. The grid
points for this out-of-sample interpolation step are chosen to be spread across the city at a regular
spacing of 50 meters. This choice is made to ensure that the interpolated map was evenly spaced,
granular and smooth, which allows an unbiased calculation of latency aggregates such as averages
and percentiles. We implement our interpolation workflow using standard Python libraries such
as Scikit-learn [41] and Geopandas [26], but tools such as ArcGIS [45] or QGIS [43] can also be
adopted for this step. The choice of Python libraries is motivated by their open-source nature,
flexibility, and ease of integration with typical data science workflows.
Overlay with Hexagons. This process involves creating a tessellation of regular hexagons to
comprehensively cover the entire study area of Chicago. Hexagons are chosen because they have
the highest perimeter-to-area ratio among regular polygons, which allows them to tessellate the
map with minimal overlap. The Federal Communication Commission (FCC) commonly uses the H3
tessellation system [15] to map broadband availability across the United States. H3 is a hierarchical
geospatial indexing system widely used in real-time applications such as taxi demand forecasting
and urban planning. H3 hexagons can be constructed at 16 different resolutions ranging from 0
to 15, with a higher resolution representing hexagons of smaller edge lengths. The FCC uses a
resolution of 8 for their broadband availability maps. To ensure compatibility with the FCC maps,
we choose to use the same resolution for our analysis.
Aggregation over each cell. Upon overlaying the interpolated points with regular hexagonal cells,
we select a suitable clustering criterion for SKATER. We thus experiment with different aggregation
choices such as mean, percentiles, standard deviation and other metrics used in prior work. The
sensitivity of our approach to these metrics is discussed in Section 6.1. Ultimately, we apply and
evaluate SKATER to perform regionalization on the aggregated cells to identify regions with similar
latency characteristics.
Spatial Clustering. Stable regional clusterings across time are expected to be relevant for effective
policy-making, particularly in the context of funding programs like the BEAD initiative. BEAD
funding aims to address disparities in broadband access by targeting resources to underserved
areas. Consistent regional boundaries ensure that these investments are directed efficiently and
equitably. Our approach, therefore, should result in clusters that identify consistently underserved
regions regardless of the choice of time interval for drawing the data samples. We thus evaluate
our regionalization results from a lens of stability across time. To measure stability, we use the
Adjusted Rand Index (ARI) [56] due to its ability to preserve the relative ordering of the clusters.
ARI considers all pairs of hexagons and counts the number of pairs that are assigned to the same or
different clusters between two clusterings. Then, it calculates the probability of agreement between
the two clusterings, and compares it to the expected agreement under random assignment. The
ARI score ranges between -1 and 1, with 1 indicating perfect agreement between the clusterings, 0
indicating random assignment, and -1 indicating complete disagreement. We use the ARI score to
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Interpolation
Method

Description Parameters

Inverse Distance
Weighting (IDW)

Computes weighted average of
nearby measurements. Uses the dis-
tance from an unsampled location
for weight calculations.

𝑝 (Impact of distance on weights)

Locally Estimated
Scatterplot Smooth-
ing (LOESS)

Fits local regression lines to de-
noise latency across space. Uses lat-
long values directly for regression.

𝑠𝑝𝑎𝑛 (Proportion of data points
used for regression)

Self-tuning Band-
width in Kernel
Regression (STBKR)

Computes weighted averages of
nearby measurements as estimates
for unsampled locations. Uses a
Gaussian Kernel to model point den-
sities.

𝑐 (Controls bandwidth of the ker-
nel), 𝑘 (Number of nearest neigh-
bors)

Table 3. A summary of chosen interpolation methods and their parameters.

compare the clusterings obtained for different choices of SKATER parameters. For each parameter
combination, we calculate the median ARI score between each pair of monthly clusterings. Median
is chosen for this aggregation because we noticed multimodal behavior in the distribution of
pairwise ARI scores over our parameter choices.

4 Interpolation

In this section, we compare three deterministic interpolation techniques—Inverse Distance Weight-
ing (IDW), Locally Estimated Scatterplot Smoothing (LOESS), and Self-tuning Bandwidth in Kernel
Regression (STBKR)—to estimate latency at unsampled locations in the Ookla dataset. We evaluate
the precision and reliability of these techniques, and discuss the implications of our findings.
4.1 Problem Formulation
Assume that we are given 𝑛 observed locations with latency values 𝑧𝑖 at locations (𝑥𝑖 , 𝑦𝑖 ), 𝑖 =
1, 2, . . . , 𝑛, and we are interested in estimating the latency 𝑧 at an unmeasured location (𝑥,𝑦).
Let 𝑍 (𝑥,𝑦) denote the latency value at location (𝑥,𝑦) for a specific month. We are interested in
obtaining an estimate 𝑍 (𝑥,𝑦) for 𝑍 (𝑥,𝑦) at (𝑥,𝑦).
4.2 Techniques
For the above problem formulation, we consider three interpolation techniques: Inverse Distance
Weighting (IDW), Locally Estimated Scatterplot Smoothing (LOESS), and Self-tuning Bandwidth in
Kernel Regression (STBKR). We summarize these techniques in Table 3.
Inverse Distance Weighting (IDW). IDW assigns weights to each nearby data point based on
its distance from an unsampled location. It uses these weights to calculate a linear combination
of nearby values as an estimate of the target metric at an unsampled location. The relationship
between the similarity of nearby data points and their distance is assumed to be inverse in nature.
The IDW estimate 𝑍 (𝑥,𝑦) at location (𝑥,𝑦) is given by:

𝑍 (𝑥,𝑦) =

∑𝑛
𝑖=1

𝑧𝑖

𝑑
𝑝

𝑖∑𝑛
𝑖=1

1
𝑑
𝑝

𝑖

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.



34:10 Taveesh Sharma, Paul Schmitt, Francesco Bronzino, Nick Feamster, and Nicole P. Marwell

where 𝑑𝑖 is the Euclidean distance between the target location (𝑥,𝑦) and the 𝑖𝑡ℎ data point
(𝑥𝑖 , 𝑦𝑖 ), and 𝑝 ≥ 1 is a parameter used to control the influence of nearby points. A higher value of
𝑝 indicates a greater influence.
Locally Estimated Scatterplot Smoothing (LOESS). LOESS [9] is a non-parametric regression
technique that fits a smooth curve to a scatterplot of data points. By fitting a set of local polynomials
to the spatial data, it smoothes any discontinuities and effectively captures the underlying spatial
patterns. LOESS uses a smoothing parameter 𝛼 , commonly known as the span, to control the extent
of smoothing. It assigns weights to the nearby data points (𝑥𝑖 , 𝑦𝑖 ) depending on their distance from
an unsampled location (𝑥,𝑦) using a Tri-cube Kernel. The weights,𝑤{(𝑥,𝑦), (𝑥𝑖 , 𝑦𝑖 )} are given by:

(
1 −

(
∥ (𝑥𝑖 ,𝑦𝑖 )−(𝑥,𝑦) ∥

ℎ

)3)3
if ∥(𝑥𝑖 , 𝑦𝑖 ) − (𝑥,𝑦)∥ ≤ ℎ,

0 otherwise
The bandwidth of the Kernel ℎ is set in such a way that approximately 𝛼 × 𝑛 neighbors are

included in each local regression, where 𝑛 is the total number of data points. ∥(𝑥𝑖 , 𝑦𝑖 ) − (𝑥,𝑦)∥
denotes the Euclidean distance between a sampled and an unsampled location. The final estimate
𝑍 (𝑥,𝑦) at location (𝑥,𝑦) is given by 𝑍 (𝑥,𝑦) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦. The coefficients 𝛽 (𝑥,𝑦) = {𝛽0, 𝛽1, 𝛽2}
are determined by minimizing the weighted sum of squared residuals, akin to traditional regression
methods:

𝛽 (𝑥,𝑦) = argmin
𝛽

𝑛∑︁
𝑖=1

𝑤{(𝑥,𝑦), (𝑥𝑖 , 𝑦𝑖 )}{𝑧𝑖 − 𝑍 (𝑥𝑖 , 𝑦𝑖 )}2

It is worth noting that the above formulation uses a linear polynomial. It is possible to use
higher-order polynomials to fit the data, though this may lead to overfitting. In our work, we
restrict the scope to linear polynomials due to their low complexity and high interpretability.
Self-tuning Bandwidth in Kernel Regression (STBKR). The STBKR technique proposed in
Jiang et. al. [25] uses a Gaussian Kernel regression method to estimate mobile Internet quality.
Their approach allows the bandwidth of the Kernel to be tuned automatically, depending on the
density of measurements in the local neighborhood of an unsampled location. The STBKR estimate
of 𝑍 (𝑥,𝑦) at location (𝑥,𝑦) is given by:

𝑍 (𝑥,𝑦) =
∑𝑛

𝑖=1 𝐾ℎ (𝑥,𝑦) (∥(𝑥𝑖 , 𝑦𝑖 ) − (𝑥,𝑦)∥) 𝑧𝑖∑𝑛
𝑖=1 𝐾ℎ (𝑥,𝑦) (∥(𝑥𝑖 , 𝑦𝑖 ) − (𝑥,𝑦)∥)

where𝐾ℎ (𝑥,𝑦) is the Gaussian Kernel functionwith bandwidthℎ, given by𝐾 (𝑢) = 1√
2𝜋ℎ (𝑥,𝑦) 𝑒

− 𝑢2
2ℎ2 (𝑥,𝑦) .

The use of a Gaussian Kernel provides a mechanism for decaying the influence of data points as
their distance from the unsampled location increases. The adaptive bandwidth ℎ(𝑥,𝑦) is given by
ℎ(𝑥,𝑦) = 𝑐𝑅𝑘 (𝑥,𝑦)2, where 𝑐 is a parameter to control the bandwidth, and 𝑅𝑘 (𝑥,𝑦) is the average
distance between (𝑥,𝑦) and its 𝑘 nearest neighbors. Parameters 𝑐 and 𝑘 are both tuned using
cross-validation.
4.3 Evaluation

Objective. To assess whether the chosen methods can potentially yield accurate estimates at
synthetic, out-of-sample grid locations, we first performed an in-sample evaluation. We thus
evaluated the models on the preprocessed dataset using an 80-20 split for each month. Then, we
compared the best case latency estimate at each test location. We define the best case latency
estimate as the one that minimizes the absolute error for a ground truth measurement conducted

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.



Beyond Data Points: Regionalizing Crowdsourced Latency Measurements 34:11

100 101 102

Latency [ms]

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Ground Truth LOESS Estimates

(a) LOESS

100 101 102

Latency [ms]

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Ground Truth STBKR Estimates

(b) STBKR

100 101 102

Latency [ms]

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Ground Truth IDW Estimates

(c) IDW

Fig. 2. Error analysis for prior interpolation techniques. The x-axis shows per-location latency
values on a log scale.While STBKR provides well-aligned estimates, IDW shows a greater sensitivity
to outliers in latency.

at that location. Finally, we compare the estimate and the ground truth, i.e, 𝑍 (𝑥,𝑦) and 𝑍 (𝑥,𝑦),
across models. Our evaluation ensures that we use the same training and testing sets across all
models and parameter choices.
Parameter Selection.Our estimates were optimized using a grid search over each parameter choice.
We set the parameters for each model as follows: 𝑝 = 1, 2, 3 for IDW, and 𝑠𝑝𝑎𝑛 = 0.05, 0.1, 0.5, 1 for
LOESS. For STBKR, we vary 𝑐 between 10−5 and 100, while 𝑘 is varied between 5 and 1000, both on
logarithmic scales.
Overall Comparisons. Figure 2 shows the distributions of ground truth and predicted latency
values across the three interpolation models. In Figure 2a, we observe a narrow range for LOESS
estimates, suggesting that the model underestimates latency for a vast majority of locations. These
underestimates are likely a result of the model’s dependence on the locations’ coordinates. LOESS
performs a regression over the lat-long values directly. While this allows the model to capture
the broader trends in latency across the geography, it is less effective in capturing the extreme
values. So, using LOESS with a linear polynomial may not be appropriate when there is a greater
presence of outliers in ground-truth latency estimates. In contrast, the STBKR model (Figure 2b)
shows a slightly better alignment with the ground truth, suggesting that the model performs
better than LOESS in capturing extreme values. However, in comparison to IDW, we notice that
the distribution of STBKR estimates possesses a shorter rightmost tail, indicating that STBKR
underestimates latency at locations with high ground-truth values. This is further confirmed by
counting the number of locations for which we observe > 50 ms latency estimates for STBKR. We
find that for IDW, the number of locations with > 50 ms latency is 2.04 times higher than STBKR.
The ability to capture extreme values is crucial towards understanding the distribution of latency
over a geography, especially when the focus is on identifying areas with poor connectivity. Further,
STBKR being a Kernel regression method, has an 𝑂 (𝑁 2) complexity for parameter tuning [22],
where 𝑁 is the total number of data points. This makes it computationally expensive for large
datasets. In contrast, IDW does not require an additional parameter tuning step, and involves lower
number of computations, making it a suitable choice for large datasets such as Ookla.

Takeaways. We evaluate three deterministic interpolation techniques – IDW, LOESS and
STBKR – to estimate latency by down-sampling the Ookla dataset. The lower computational
complexity for IDW, coupled with its higher sensitivity to extreme values, makes it a suitable
choice for large datasets such as Ookla. We thus choose IDW as the primary interpolation
technique for our subsequent analysis.
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5 Regionalization

To construct the sampling boundaries for Chicago, we first interpolate latency measurements
across the citywide geography at regular grid spacing. Then, we overlay these measurements with
hexagon cells. Finally, we apply SKATER with aggregates calculated within these boundary units as
the clustering metric. We next formally describe the problem and our approach to regionalization.
5.1 Problem Formulation
The problem of discovering statistical sampling boundaries for latency can be restructured as
an unsupervised learning problem. Consider a geographical region Ω and a set of its partitions
H = {𝐻𝑖 }𝑛𝑖=1. Further, consider a set of latency measurements conducted over the region as
X = {𝑥𝑖 }𝑛𝑖=1. Our goal is to find a set of spatially contiguous clusters C = {𝐶𝑖 }𝑁𝑖=1 such that each
cluster 𝐶𝑖 is a subset of H , and the latency values within each cluster are drawn from a common
distribution. To achieve this, we calculate the mean latency for each partition𝐻𝑖 as 𝜇𝑖 = 1

|𝐻𝑖 |
∑

𝑥∈𝐻𝑖
𝑥

and assign a feature vector v𝑖 = [𝜇𝑖 ] to each partition. To calculate the dissimilarity among the
partitions, we consider the use of Euclidean distance, 𝑑 (v𝑖 , v𝑗 ) = ∥v𝑖 − v𝑗 ∥. Using this dissimilarity
function, we apply a spatial clustering algorithm to group the partitions into 𝑁 clusters. Finally,
we define the existence of a sampling boundary (𝐵) between two partitions of the region Ω as:

𝐵(𝐻𝑖 , 𝐻 𝑗 ) =
{
True, if 𝐻𝑖 ∈ 𝐶𝑘 and 𝐻 𝑗 ∈ 𝐶𝑙 , with 𝑘 ≠ 𝑙

False, otherwise

5.2 Technique
We choose SKATER [3] as the default regionalization algorithm. SKATER provides a fast and
efficient way to identify spatially contiguous clusters in a given region. Additionally, it offers a way
to control for homogeneity of the clusters by setting thresholds. The SKATER algorithm involves
three main steps. First, it constructs a graph where each node represents a spatial unit, e.g, a census
tract boundary, hexagonal units, geographic coordinates of Internet users, or a neighborhood. The
edges between the nodes denote spatial adjacency, i.e., two nodes are connected if they share a
common boundary. In case of points, the edges are constructed using a distance threshold. The
weights of these edges are determined using the dissimilarity between the nodes, which is Euclidean
distance in our case. In the second step, SKATER constructs a Minimum Spanning Tree (MST) from
the graph. An MST is a tree that connects all the nodes in the graph using the minimum possible
edge weights. The use of MST in this step ensures a faster runtime, as considering all edges in the
graph is infeasible. In the final step, the MST is iteratively pruned by removing edges with the
highest weights. This results in a set of connected components, one for each spatially contiguous
cluster. The number and size of the clusters can be controlled using two parameters, 𝑁 and 𝑓 𝑙𝑜𝑜𝑟 .
𝑁 denotes the number of clusters, and 𝑓 𝑙𝑜𝑜𝑟 denotes the minimum number of nodes in each cluster.
We apply SKATER to the resolution-8 hexagon cell overlay for Chicago upon interpolating the
latency values using IDW at regular grid spacing of 50 meters.
5.3 Cluster Optimization

Objective. Since there is little prior knowledge about the true number of clusters and their individual
sizes, we perform a sensitivity analysis for optimizing the parameters for SKATER. There can be
numerous ways to conduct this analysis. Akin to traditional clustering methods, approaches such as
Silhouette score [49] or Davies-Bouldin index [27] can be used to determine the optimal parameters
for SKATER. While these approaches are widely used, they may give us a different set of parameters
for each monthly set of IDW interpolated latency estimates. This is undesirable because true
infrastructure boundaries may be less prone to changes over time. To address this issue, we use a
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more intuitive, grid-search based approach to find the optimal set of parameters. For each month,
while varying 𝑁 and 𝑓 𝑙𝑜𝑜𝑟 , we select the set of parameters that yield most similar boundaries
between monthly fits. Further, for a given choice of 𝑓 𝑙𝑜𝑜𝑟 , if increasing the number of clusters
by one results in the same cluster boundaries, we cease increasing the number of clusters any
further. This is because the additional cluster does not provide any additional information about
the underlying spatial distribution of latency.
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(a) Median Adjusted Rand Index (ARI)
as a function 𝑁 .

(b) Boundaries for May 2022
with 𝑁 = 77. Zoomed-in green
region is a spatial outlier.

(c) Boundaries for
77 neighborhoods in
Chicago.

Fig. 3. Analysis of clustering performance using SKATER. 3a shows the median ARI score for
𝑓 𝑙𝑜𝑜𝑟 = 2 against 𝑁 calculated over monthly fits of SKATER. 3b and 3c compare the resulting
clusters for 𝑁 = 77 and 𝑓 𝑙𝑜𝑜𝑟 = 2with the neighborhood boundaries for Chicago. Boundaries drawn
from measurement data do not align with administrative boundaries.

Parameter Selection. We use the Adjusted Rand Index (ARI) to compare the clusterings obtained
for different choices of 𝑁 and 𝑓 𝑙𝑜𝑜𝑟 . For each parameter combination, we calculate the median
ARI score between each pair of monthly clusterings. We generally observed a low sensitivity of
the ARI towards the choice of 𝑓 𝑙𝑜𝑜𝑟 (varied between 2 and 37) when we used mean to aggregate
latency over each cell. Figure 3a shows the median ARI score for 𝑓 𝑙𝑜𝑜𝑟 = 2 versus 𝑁 calculated
over monthly fits of SKATER. We choose a 𝑓 𝑙𝑜𝑜𝑟 of 2 because it helps us identify small clusters
with significant differences in latency from their neighbors. We observe that a lower 𝑁 (𝑁 ≤ 3)
allows for more stable clusters, but the similarity between the resulting clusters tends to stabilize
between 𝑁 = 7 and 𝑁 = 9. Beyond this stage, the median ARI starts to decline as the clusters
become increasingly fragmented. We choose 𝑁 = 7 and 𝑓 𝑙𝑜𝑜𝑟 = 2 for subsequent analysis and
demonstrations as this combination gives a higher similarity in the vicinity of the stabilization
point. This choice also allows us to identify fine-grained boundaries while ensuring that the clusters
are not overly fragmented.
Misalignment with Administrative Boundaries.We also check whether data-driven boundaries
generated using SKATER align with administrative area boundaries. In Figure 3b and Figure 3c,
we compare the resulting clusters for 𝑁 = 77 and 𝑓 𝑙𝑜𝑜𝑟 = 2 with the neighborhood boundaries
for Chicago. The choice of 𝑁 is the same as the total number of neighborhoods in Chicago.
We observe that the clusters drawn from latency measurement data do not show a one-to-one
correspondence with the administrative boundaries. This result suggests that sampling along
administrative boundaries may not be the best approach for understanding the spatial distribution
of latency.
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Takeaways. While we choose 𝑓 𝑙𝑜𝑜𝑟 = 2 and 𝑁 = 7 for subsequent analysis, we argue that the
choice of 𝑁 and 𝑓 𝑙𝑜𝑜𝑟 ultimately depends on the policy use-case under consideration. For a
given 𝑓 𝑙𝑜𝑜𝑟 , a lower value of 𝑁 may be suited in scenarios that may involve allocating a limited
investment budget towards larger divisions of the geography. A higher value of 𝑁 , instead, is
desirable in cases when targeted interventions may be required in regions marked by abnormal
performance. An example of such a region is the green region shown in the zoomed-in box in
Figure 3b. In comparison with the citywide average of 19.07 ms, we observe a higher average
latency of 45.04 ms for this region. The orange neighboring region shows an average latency of
17.15 ms. This also demonstrates the ability of our approach in identifying spatial outliers in
latency.

6 Cluster Sensitivity to Data Sampling Choices

Our analysis thus far used a single, IDW-interpolated sample of Ookla measurements in combination
with average latency as the default clustering metric. In this section, we discuss the sensitivity
of our results towards the choice of sampling and aggregation methods. We experiment with the
aggregation metric, the aggregation unit, and the ISP to compare sampling boundaries.
6.1 Impact of Aggregation Metric
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(a) 𝑓 𝑙𝑜𝑜𝑟 = 2, 𝑁 = 7
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(b) 𝑓 𝑙𝑜𝑜𝑟 = 25, 𝑁 = 7

Fig. 4. Comparison of boundary similarities under two extreme values of 𝑓 𝑙𝑜𝑜𝑟 . Higher percentiles
show a greater ARI score when we require more homogeneous clusters.

Experiment Setup. We first assess which aggregation metrics lead to more stable boundaries across
monthly fits. While mean, percentiles and standard deviation are more intuitive metrics to pick
from, a number of additional, compound metrics have been proposed in prior work. The inequality
ratio [33] is defined as the ratio between the 90𝑡ℎ and 10𝑡ℎ percentile of latency. A higher value of
this metric indicates a higher degree of variability in the latency measurements within a hexagonal
cell. Latency reduction [50], i.e, the difference between 90𝑡ℎ and 10𝑡ℎ percentile latency, is also
considered for stability checks. For each choice of metric, we calculate the ARI score between the
boundaries obtained using SKATER. Then, we compare the distribution of pairwise ARI scores
calculated between monthly fits of the algorithm.
Observations. Figure 4 shows a comparison of the pairwise ARI scores for above metric choices.
In Figure 4a, with a 𝑓 𝑙𝑜𝑜𝑟 of 2, we observe that the 10𝑡ℎ and the 90𝑡ℎ percentile show a similar
ARI score, while the ARI score for the 95𝑡ℎ and 97.5𝑡ℎ percentiles is higher. Contrary to this, in
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Figure 4b, we observe a reduced stability as we move from the 10𝑡ℎ to the 90𝑡ℎ percentile while
using a higher value of 𝑓 𝑙𝑜𝑜𝑟 . Other metrics show moderate levels of ARI scores.
Dependence on cluster size.We argue that above observations are an artifact of an important
trade-off. The 𝑓 𝑙𝑜𝑜𝑟 parameter, in essence, controls the balance between homogeneity and contiguity
in the resulting clusters. A lower 𝑓 𝑙𝑜𝑜𝑟 results in clusters of greater homogeneity but less contiguity,
while a higher 𝑓 𝑙𝑜𝑜𝑟 results in larger but less homogeneous clusters. When 𝑓 𝑙𝑜𝑜𝑟 is set to 2, a
superior homogeneity in the clusters reduces the difference between the 10𝑡ℎ and 90𝑡ℎ percentiles,
leading to similar ARI scores for these metric choices in a cluster. Since the cluster sizes are relatively
small, regions showing consistently high levels of latency are likely to persist across months. This
leads to a higher similarity for the 95𝑡ℎ and 97.5𝑡ℎ percentiles. The 99𝑡ℎ percentile is more likely
to capture rare events such as outages or congestion, and thus registers a lower ARI score than
the 97.5𝑡ℎ percentile. When 𝑓 𝑙𝑜𝑜𝑟 is changed to 25, the clusters become more contiguous and
large, with greater differences arising between the extreme values. Across larger areas, the baseline
latency is likely to remain stable, whereas the variability in latency above the baseline is expected
to be greater. This leads to a reduced similarity as we move from the 10𝑡ℎ to the 90𝑡ℎ percentile.

Takeaways. The above results are relevant from a policy standpoint because they highlight
the importance of choosing the right aggregation metric for carving out sampling boundaries
for latency. When the policy objectives are to identify smaller regions with consistently poor
latency for targeted interventions, a lower 𝑓 𝑙𝑜𝑜𝑟 coupled with a higher percentile metric such
as the 90𝑡ℎ or 95𝑡ℎ is more suitable. On the other hand, when there is a need to identify larger
regions with varying levels of latency, a higher 𝑓 𝑙𝑜𝑜𝑟 in combination with a lower percentile
metric, such as the 10𝑡ℎ , is more preferable.

6.2 Impact of Aggregation Unit

(a) Regular Hexagons (b) Census Tracts (c) Neighborhoods

Fig. 5. Comparison of boundaries under different aggregation unit choices with 𝑁 = 7 for June
2022. The choice of sampling unit can significantly affect resulting sampling boundaries, and hence
our conclusions about the spatial distribution of latency.

Experiment Setup. We next evaluate how the choice of the smallest spatial unit affects the
similarity among monthly fits of SKATER. To this end, we consider the use of three unit types
– regular hexagons, census tracts and neighborhood boundaries for Chicago. We continue with
our choice of 𝑁 = 7 but set 𝑓 𝑙𝑜𝑜𝑟 to 1 for these comparisons. This is because for census tracts,
we noticed that two of the tracts were disconnected from the rest, leading to two distinct spatial
islands. Due to this behavior, we notice that any choice with 𝑓 𝑙𝑜𝑜𝑟 ≥ 2 led to the exclusion of these
disconnected tracts from the analysis, potentially skewing the results and reducing the validity of
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(a) Raw Averaging
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(b) Interpolated Averaging

Fig. 6. Pairwise ARI comparison across aggregation unit choices and averaging method for raw and
interpolated data. Raw averaging is only suitable when computed over regular and small spatial
scales.

our comparisons. By setting 𝑓 𝑙𝑜𝑜𝑟 to 1, we ensure that all spatial units, however small, are included
in the analysis, and we make fair comparisons between the three unit choices.
Observations. Figure 5 shows an example comparison between the resulting boundaries for June
2022. We notice that the South and South-West sides are clustered together in all three cases, with
this boundary extending up to the far North for neighborhood units. Additionally, we observe a
greater degree of variability in the Northern regions, with the hexagonal units providing more
fine-grained sets of clusters. To further understand the cluster quality for the above unit choices
with or without interpolation, we plot the monthly pairwise ARI score distributions in Figure 6a
and Figure 6b. We see that prior interpolation ensures a consistent ARI score across the choice of
aggregation units, with hexagons achieving the highest median ARI scores. Additionally, we see
that raw averaging of point latency measurements tends to produce worse clustering performance
in the case of census tract and neighborhood units. Overall, hexagonal units with post-interpolation
averaging register a median ARI score of 0.59, in comparison to a score of 0.20 for the traditional
practice of using census tract units with raw averaging.
Unstable administrative clusters with raw averaging. Census tracts and neighborhood bound-
aries tend to be unevenly distributed in size, shape and population density, leading to irregular
smoothing of latency variations, and thus less stable boundaries. For hexagonal cells, we observe a
superior clustering performance for raw averaging, suggesting that raw averaging is only reliable
when computed over small yet regular spatial units. Interpolated averaging, on the other hand,
ensures consistent boundaries across the choice of aggregation units, with hexagons showing the
highest median ARI scores. This is because prior interpolation helps capture the underlying spatial
trends in the data, leading to more consistent boundaries across different spatial unit choices.

Takeaways. Above results signal a significant departure from the status quo of using raw
averaging for aggregating Internet performance over administrative regions. For policy, it is thus
advisable to use prior interpolation to ensure consistency in results when using administrative
boundaries, or high resolution, regular spatial units if computing aggregates directly from raw
measurements.
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Fig. 7. Heatmap of ARI scores between ISPs for the 17-month duration. We observe low similarity
between the boundaries obtained for different ISPs.

6.3 Impact of ISP

Experiment Setup. Our samples thus far have included latency data from multiple ISPs together
for aggregation into cells. We now evaluate how much do ISPs share latency boundaries among their
respective samples. We therefore first select top-five ISPs on the basis of their measurement counts.
Then, we apply IDW individually to the 17-month-long samples on a per-ISP, per-month basis to
interpolate these measurements over the city. Next, with a 𝑓 𝑙𝑜𝑜𝑟 = 2 and 𝑁 = 7, we apply SKATER
after aggregating these measurements over hexagonal cells using the 95𝑡ℎ percentile. This choice
was made to ensure that we compare the most homogeneous clusters between ISPs using our best
case metric from Section 6.1. Finally, we calculate the median ARI score between the boundaries
obtained for each ISP pair over the 17-month period.
Observations. Figure 7 shows a heatmap of the resulting ARI scores between the top five ISPs.
We observe that the ISPs generally show a lower degree of similarity between their sampling
boundaries. In contrast, when we interpolate measurements over a collective sample derived from
all ISPs (as shown previously), we observe a higher degree of similarity between the boundaries.
Low similarity between ISP boundaries. When using a collective sample, the aggregation
process smoothens out variability in latency measurements across ISPs, leading to more consistent
boundaries over time. The differences between ISPs may arise from several factors such as the
geographic distribution of servers, the underlying access technology, the network design for the ISPs,
or the per-ISP sample size. When measurements from all ISPs are jointly interpolated, individual ISP
characteristics are more likely to be smoothened out, and the resulting boundaries are more likely
to reflect the geographic distribution of latency in the region. Looking at each ISP individually on a
regionalized map is likely to provide a more consumer-transparent view of network performance
in a region. It would not only help new subscribers make informed decisions about their Internet
connections, but also assist in maintaining greater scrutiny over ISPs regarding their service level
agreements (SLAs). The FCC should thus consider releasing ISP and region specific maps to ensure
that the representations of network performance are accurate and reliable.

Takeaways. If a network operator is interested in understanding the spatial distribution of
latency for their network, they should not rely on boundaries constructed from a heterogeneous
sample from multiple ISPs. Rather, they are recommended to use their own data to make
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informed decisions about infrastructure upgrades. Moreover, funding agencies and regulators
should consider the ISP-specific nature of latency when making decisions about infrastructure
investments.

7 Improving Clustering Stability

While our use of ARI score as an evaluation metric allows for understanding the degree of similarity
between boundaries, it does not help localize the boundary variation, or volatility in each cluster-
ing. Localizing this volatility can be crucial for making informed decisions about infrastructure
investments. Areas with high clustering volatility can be used for running additional measurement
campaigns to fill data gaps, while those showing low volatility can be prioritized for immediate
policy interventions. We use bootstrap resampling [14] techniques to calculate this metric. Boot-
strap resampling is often used to estimate sample statistics when the underlying distribution of the
data is unknown. In our case, we use this technique to simulate the perturbations across clusters
to estimate the distribution of volatility in cluster assignments. We define volatility for a cell as
the probability that applying SKATER on two different samples of the same dataset will result in
different cluster assignments for the cell. Formally, for a cell 𝐻𝑖 , we define the clustering volatility
as:

𝑉 (𝐻𝑖 ) =
∑ |𝐵 |

𝑗=1
∑ |𝐵 |

𝑘=1 𝐼 {C𝑗 (𝐻𝑖 ) ≠ C𝑘 (𝐻𝑖 )}( |𝐵 |
2
)

where |𝐵 | denotes the number of bootstrap samples drawn from the dataset. A total of 1000
samples is often considered adequate for most practical use cases [14], so we choose |𝐵 | = 1000.
C𝑗 (𝐻𝑖 ) denotes the cluster assignment for the cell 𝐻𝑖 when SKATER with 𝑁 = 7 and 𝑓 𝑙𝑜𝑜𝑟 = 2
is applied to the 𝑗𝑡ℎ bootstrap sample. 𝐼 {C𝑗 (𝐻𝑖 ) ≠ C𝑘 (𝐻𝑖 )} denotes the indicator function that
assumes 1 when two different bootstrap samples result in a different cluster assignment, and 0
otherwise.

( |𝐵 |
2
)
denotes the binomial coefficient, indicating the total number of pairs of cluster

assignments for the cell.
Bootstrap resampling in its original form assumes that the samples drawn are independently and

identically distributed. For calculating clustering volatility, we use a spatial version of this technique,
called block bootstrapping [44]. Block bootstrapping accounts for potential spatial auto-correlation
in the data that may be induced due to smoothing of variations caused by interpolation. We estimate
that the interpolated dataset produces a global Moran’s I [34] (an indicator of overall spatial
dependence) of 0.795, on a scale of -1 and 1, with a significance level of 0.001 among 10𝑡ℎ percentile
latency aggregates, suggesting that the smoothing caused by IDW induced significant spatial auto-
correlation. In block bootstrapping, instead of drawing individual point samples independently, we
thus resample points from complete hexagonal cells to account for local spatial dependencies in
the data. We use a block size of one cell under the assumption that spatial dependencies between
cells are minimal. We then calculate the clustering volatility for each cell over the city.
Figure 9 shows an example boundary volatility map for Chicago for January 2022 with 10𝑡ℎ

percentile as the aggregation metric under block bootstrapping. We use 𝑁 = 7 and 𝑓 𝑙𝑜𝑜𝑟 = 2 for this
analysis. We observe that majority of the hexagonal cells show a low-to-moderate level of volatility.
These regions show some fuzziness in the boundaries, indicating that the cluster assignments for
these cells are more likely to change across different samples of the interpolated dataset. We also
observe that three distinct regions show zero boundary volatility overall. The North-Western region
hosts the city’s airport, the Central-Eastern region is marked by Chicago’s central business district
(CBD), while the Southern region generally represents areas with a high poverty rate [28]. These
areas are likely to represent distinct network conditions than other suburban areas, leading to more
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Fig. 9. Resulting clustering volatility map for January 2022. The 10𝑡ℎ percentile of latency is used
as the aggregation metric. Block bootstrapping identifies three distinct regions of zero boundary
volatility.

stable boundaries over time. Regions falling in these contiguous cells with low volatility can be
prioritized for immediate policy interventions, depending on the underlying latency distribution.
On the other hand, regions marked with significant volatility, such as some suburban regions, can
benefit from additional data collection efforts for ensuring more stable boundaries.

8 Related Work

Crowdsourced speed test datasets, such as Ookla and M-Lab have found a variety of policy use
cases in prior research. Bauer et. al. [5] describe the best practices for reporting data to reason
about advertised and measured speeds for ISPs. Similarly, Feamster and Livingood [16] describe
the need to augment speed test outputs with additional contextual information to increase the
scope and usability of crowdsourced data. Going a step further, Paul et. al. [40] showed an empirical
characterization of several factors that may confound Internet performance of an access link.
Further, Macmillan et. al. [31] augment real-world speed test data with laboratory experiments
to understand the differences between M-Lab’s NDT and Ookla’s Speedtest tools. They find that
Ookla Speedtest tends to report higher speeds than M-Lab NDT under high latency conditions,
further showcasing the need for additional context in analyzing speed test data. Finally, Clark and
Wedeman [10] discuss the need to interpret aggregate statistics on speed test data over geographies
to understand the overall behavior of the Internet. While these studies collectively point towards a
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need for a comprehensive understanding of the Internet access landscape, they do not leverage the
spatial nature of the crowdsourced measurement data to inform policy decisions.
More recently, there is an emergence of studies that do leverage location information from

crowdsourced speed test data for analysis. Paul et. al. [39] summarize upload and download speeds
within census block groups using the M-Lab dataset, and correlate these speeds with demographic
data. They find income levels to possess significant relationship with download speed. Further,
Lee et. al. [30] present a methodology for regional bias correction in crowdsourced Ookla speed
test measurements. Krzysztof et. al. [24] explore local Internet quality in Poland using a spatial
analysis on an Ookla dataset, highlighting the non-uniformity in access quality among rural and
urban areas. Caldas et. al. [8] perform a similar analysis over Denmark to highlight Internet access
disparities in Denmark. Though these studies leverage spatial information, they: (1) still rely on
aggregates calculated over predefined social boundaries for analysis, and (2) do not take into
account uneven densities of measurements within these boundaries. These limitations can lead
to coarse generalizations, and can prevent policymakers from identifying specific areas that may
need immediate interventions.
Another class of studies closely related to our work directly leverage point measurements by

not assuming prior structure to measurement sampling boundaries. For instance, Sommers et.
al. [55] use Inverse Distance Weighting (IDW) to understand the spatial distribution of cellular
and Wi-Fi performance in metro areas. Similar to Caldas et. al., they observe a degradation in
performance as one moves further away from metro areas. Jiang et. al. [25] propose the Self-
tuning Bandwidth in Kernel Regression (STBKR) technique to estimate cellular speed test quality
using speed measurements from Ookla. They find that STBKR outperforms Kriging in accurately
estimating throughput in sparsely sampled regions. The LOESS technique, used in astronomy
[9] to analyze the trajectories of celestial objects, has not been used in the context of Internet
performance. In our work, we extend these techniques to identify distinct regions for sampling
Internet performance on the basis of latency, with a focus on stability of these boundaries over
time and sampling variations.

9 Conclusion & Future Work

This work presents a new approach for discovering statistical latency sampling boundaries within
a geographic region, such as a city, using crowdsourced latency measurements. The findings of
this study underscore the importance of spatial analysis in network planning and the benefits
of targeted infrastructure investments for equitable Internet access. We show that the method
we develop can identify contiguous geographic regions with poor Internet performance; such
information can be used to inform policy interventions and also assist ISPs with infrastructure
planning. We summarize the implications of our work and discuss potential future directions below.
Applying our approach to policymaking. Our work provides a method for identifying Internet
latency sampling boundaries, assumingminimal information about the underlying infrastructure. By
delineating clear latency boundaries, network operators can target specific areas for infrastructure
improvements, optimizing resource allocation and enhancing overall network performance. For
instance, our illustration from Figure 3b provides a starting point for identifying areas with higher
latency. Given a sample of diagnostic measurement data and a specific timescale, contiguous regions
with poor latency can be identified over a geography in a similar manner. Even though network
operators may have their own measurement infrastructure in place, our method is particularly
valuable for leveraging crowdsourced data, which can provide coverage from a large number of
real-world vantage points in a cost-effective manner. It enables operators to work with scattered
samples, where continuous measurements are unavailable. Integrating our clustering approach with
further diagnostic information can give rise to suitable infrastructure improvements such as cable
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upgrades, deployment of additional hardware, or routing optimizations in under-provisioned areas.
Our finding from Section 6.2 suggests that the use of regular spatial units in place of administrative
boundaries is expected to generate Internet performance representations that are more appropriate
to inform long-term policy interventions. Finally, our finding from Section 6.3 provides an important
insight into using crowdsourced data for the FCC. Instead of relying on a large heterogeneous
dataset, regulators can use our method to identify boundaries on a per-ISP basis, which can help in
understanding the impact of different ISPs on overall network performance in a region.
Reliance on crowdsourced measurement data. Although our approach helps reveal significant
spatial structure from latency measurements, our sampling boundaries are still based on crowd-
sourced data. Despite its wide adoption, Ookla data may not be representative of all users, especially
those with limited or no Internet access. Future work can thus explore the possibility of exploring
an augmentation of multiple data sources using novel metrics to improve the representativeness
of the data. Our findings from Section 6.1 provide a starting point for such an exploration. The
design of spatial clustering methods that improve the ARI scores for metrics such as the inequality
ratio, or latency reduction, can be a promising direction, as these metrics can potentially remain
consistent across datasets and device types.
Sensitivity to interpolation. A key component of our method relies on prior interpolation
methods to build a surface model of latency across the city. Although we primarily use IDW
interpolation in this work, the mutual agreement between boundaries drawn using different
interpolation algorithms is remaining to be evaluated. Additionally, interpolation methods that
incorporate local context such as network topology, routing information, and urban infrastructure
can be explored to improve the accuracy of the surface model. This information can enhance the
stability of the clustering boundaries and the accuracy of the regionalization process.
Geographic scope. The primary focus of our analysis is on the city of Chicago. Our approach
identifies boundaries for sampling Internet latency without relying on Chicago-specific information
such as census or demographic data.While Chicago’s diverse urban environment offers an intriguing
testbed, we expect our methodology to be generalizable to other cities with similar data availability
and population density. A key challenge to extending our work to rural and remote areas with
low connectivity is the availability of crowdsourced data. Operators and regulators can play an
important role in collecting and sharing data from these regions to explore the potential of our
methodology in these areas.
Temporal analysis. Our criterion for identifying sampling boundaries from latency data is based
on the stability of the sampling boundaries across multiple temporal samples. While our distance
calculations for prior interpolation involve geographic distances only, our methods can be extended
to temporal distances as well. Such an approach would allow a more nuanced understanding of
the stability of boundaries, and the impact of temporal variations in network performance on the
sampling boundaries.

Ethics

In this work, we analyze a proprietary Ookla dataset under a data usage agreement (DUA). In this
dataset, the geolocations of Ookla users were truncated upto 4 decimal places, which allows a
margin of a few hundred meters. The IP addresses are masked up to the last octet, which ensures
anonymity. We did not find any other personally identifiable information in the dataset. Our
research, therefore, does not raise any ethical concerns.
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