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Abstract—With the uptake of intelligent data-driven applica-
tions, edge computing infrastructures necessitate a new generation
of admission control algorithms to maximize system performance
under limited and highly heterogeneous resources. In this paper,
we study how to optimally select information flows which belong to
different classes and dispatch them to multiple edge servers where
applications perform flow analytic tasks. The optimal policy is
obtained via the theory of constrained Markov decision processes
(CMDP) to take into account the demand of each edge application
for specific classes of flows, the constraints on computing capacity
of edge servers and the constraints on access network capacity.

We develop DRCPO, a specialized primal-dual Safe Reinforce-
ment Learning (SRL) method which solves the resulting optimal
admission control problem by reward decomposition. DRCPO
operates optimal decentralized control and mitigates effectively
state-space explosion while preserving optimality. Compared to
existing Deep Reinforcement Learning (DRL) solutions, extensive
results show that it achieves 15% higher reward on a wide variety
of environments, while requiring on average only 50% learning
episodes to converge. Finally, we further improve the system
performance by matching DRCPO with load-balancing in order to
dispatch optimally information flows to the available edge servers.

Index Terms—Edge computing, Admission Control, Con-
strained Markov Theory, Safe Reinforcement Learning.

I. INTRODUCTION

Edge computing techniques have emerged in recent years as
a powerful solution to locally process a variety of information
flows. Facing the need of serving exponentially growing service
demands, infrastructure and service providers have responded
by deploying their resources, from processing to storage, at the
network edge. Processing information as close as possible to its
source significantly reduces the amount of data to transfer to
remote cloud locations, thus decreasing latency and overhead
during remote service access [22], [12]. Enabled by edge
clouds, new classes of data intensive AI-based applications [12],
[38], [26], [30], [4] are now widespread. Unfortunately, while
edge clouds offer an on premise computing solution, they are
easily overwhelmed when demand exceeds available resources.

In fact, in contrast to the previous data center driven cloud
model, edge clouds are often co-located with the existing
network equipment and deploy limited computational resources.
Thus, they can host a limited number of applications at any
point in time. This generates the need of carefully designing
solutions to orchestrate the operations of deployed applications.
For instance, existing edge-based solutions often aim to effi-
ciently configure available computing resources [14], [13], [15],
[40] or attempt to manipulate how data flows are transported to
reduce the transmission overhead [26]. This is indeed a major
concern especially in smart-city environments [17]. Yet, as the
number of applications and, more significantly, the number of
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information flows increase, the need for a new generation of
admission control algorithms becomes apparent.

Admission control is essential for managing resources effi-
ciently, preventing under-utilization and degradation of service
quality. It is widely used across various communication and
computing systems, including mobile networks [29], [27], web
services [6], optical networks [31], and cloud computing [18],
[32]. However, the performance of AI-based edge applications
depends not just on networking or compute metrics but also on
the information content, posing new challenges for admission
control algorithms. When deployed at the edge, admission
control algorithms must select information flows processed on
edge servers to maximize the information extracted by deployed
applications. Flow arrivals and departures affect application op-
erations, especially when information flow sources are mobile
nodes entering or leaving an area. Edge service virtualization
allows replicating multiple instances of applications and de-
ploying them on several servers simultaneously. Replication
enhances robustness but requires precise performance consider-
ations. The results obtained in this work highlight the need to
orchestrate flow admission by considering the actual installation
of compute modules on edge servers and the required access
bandwidth.

Modern edge applications can be commonly characterized by
five features: applications process flows generated by a large
number of sources of different nature; these flows can enter
or leave the architecture over time due to various events; the
edge infrastructure deploys a set of applications to process
the flows on edge servers which are equipped with a given
amount of resources (e.g., compute and memory); finally, the
distributed nature of both sources and edge servers imposes the
implementation of a control plane mapping flows to compute
infrastructure.

Earlier models for admission control in edge-computing sys-
tems have not yet addressed all of these challenges. Hence, in
this paper we develop new theoretical foundations for the edge
admission problem. We extend models originally developed
for admission control in loss systems, which established the
paradigmatic concept of trunk-reservation [25]. In those early
models, a finite service pool is made available to a finite set
of service classes and each class is associated a certain reward
for the admission of one of its customers. Markovian single-
queue models for trunk-reservation have been studied in depth
[8], [7], [25], [24]. While some multi-server admission control
techniques have been studied for cloud computing, the focus
is primarily on virtual machine placement relative to pricing
[18] or overbooking [32]. Once applications are placed onto
edge servers, the framework considered in this work provides
an optimal decentralised flow admission control logic. This
necessitates several novel contributions:
System model (Sec. II). We develop a novel constrained Markov
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Figure 1: (a) Camera arrival and departure: a camera arrives in
area, it transmits its flow towards a tagged server (boxed index),
then departs; (b) System state: using notation in Tab. I, M = 4;
D1 = {A,B};D2 = {A,C};D3 = {B};D4 = {A}; X1 =
(2, 1, 0, 0);X2 = (0, 2, 0, 0), X3 = (1, 0, 2, 0);X4 = (0, 0, 0, 2);
j = 1, i = 1; Y 1 = 3, Y 2 = 2, Y 3 = 3, Y 4 = 2.

decision model to capture the dynamic admission control and
load balancing of information flows originating from multiple
sources. It accounts for heterogeneous capacity constraints for
both access network and edge servers. It also includes applica-
tions’ replication on multiple servers and their preferences on
the classes of information flows they process.
Solution concept (Sec. III). Using constrained Markov decision
theory, we have derived the structural properties of the optimal
decentralized admission control policy, showing it requires at
most one randomized action per server. The result is not obvious
since servers’ states are reward-coupled.
A new learning algorithm (Sec. IV). We introduce new tools to
optimize mobile information admission control policy rooted
in SRL. DRCPO is a novel actor-critic scheme that leverages
the structure of the optimal solution to implement the optimal
flow admission policy effectively. It is tailored for cases where
the same application may be installed on several edge servers
simultaneously.
Load balancing (Sec. V). Finally, a two-stages joint optimiza-
tion procedure increases further the system performance by
jointly optimizing routing and admission control.

Our numerical results (Sec. VI) demonstrate that, by lever-
aging the properties of the underlying Markovian model, not
only it is possible to learn the optimal admission policy with
no approximation, but this can be attained with a significant
reduction in complexity with respect to state of the art tech-
niques, which are typically oblivious to the structure of the
optimal policy and value function.

II. SYSTEM MODEL

We introduce a semi-Markov model general enough to cover
the main characteristics of the edge flow admission control
problem just outlined. It features the point process of arrivals
and departures of flows belonging to a certain class, the
coverage requirements of applications installed on edge servers
(described by their utility function), the routing of flows to
different servers and, finally, a policy to admit flows to edge
servers. We now precise its mathematical definition.

Flows belong to class index j ∈ {1, . . . ,M}. They are
generated according to a Poisson process of intensity ζj . A
flow of class j remains active for an exponential time of mean

Symbol Meaning
M number of classes
ζj arrival rate of class j flows
µj mean duration of class j flows
uij prob. of routing flows of class j to server i
Di set of applications installed on server i;
di number of applications installed on server i
ϕd servers on which d ∈ D is installed
S state space
S state S = (X, J, I), X = (X1, . . . , XM )
Xi = (Xi

j) flows of class j active on server i
Y i total occupation Y i =

∑M
j=1X

i
j of server i

A = {0, 1} action space
ψi computational capacity of server i
θi access capacity of server i
χj(d) coverage requirement of app. d for class j

Table I: Main model notation.

1/µj seconds, after which it leaves the system. The flow arrival
processes of different classes are independent and independent
of the servers’ occupancy. Edge applications consist of different
modules installed on some designated servers; we say that an
application is installed on a server if that application has a
module deployed there. In Figure 1b, we have represented a
use case for video analytics. There, each class corresponds to
video stream sources situated in one of M = 4 areas. Each
area hosts a designated edge server. An application is installed
on multiple servers, for instance application A in Fig. 1 resides
on server 1, 2 and 4. We consider the case of M edge servers:
the general case is a straightforward extension.

Let uij denote the probability that a flow of class j is routed
towards server i.1 The aggregated arrival rate at server i is
Zi =

∑
j u

i
jζj , and the total arrival rate Z =

∑
j ζj . Let denote

αij = uijζj/Z
i the probability that an arrival is of class j and

it is routed to server i. Once routed to server i, a flow is either
accepted or rejected for service depending on the system state.
If accepted at server i, it can feed the modules of applications
installed on that server. We further assume perfect information,
i.e., different servers are aware of the state of other servers.
The decision-making process regarding accepting or rejecting
an incoming flow also depends on the number of flows from the
same class already processed by the same application across the
entire system. The computational capacity of server i allows it
to process at most ψi concurrent flows simultaneously.

Our semi-Markov decision process extends the models pre-
sented in [8], [7]. The continuous process is sampled at each
arrival time t of an information flow. This results into the
discrete-time MDP M = (S,A, P ) [19]. We define S the
system state, A the action set and P the MDP probability
kernel. Whenever possible, uppercase notation, e.g., S, refers
to a random process, and lowercase notation, e.g., s, to its
realization. Di is the set of applications installed on server i.
Variable χj(d) ∈ {0, 1}M indicates whether application d is
interested in flows of class j (χj(d) = 1) or not (χj(d) = 0).

System state. The state is a triple S(t) = (X(t), J(t), I(t)):
i. X(t) is the matrix representing the system occupation at time
t, where Xi

j(t) denotes the number of flows of class j being
routed to server i at time t and being processed by applications
in Di. Y i(t) :=

∑
j X

i
j(t) is the corresponding server i total

occupancy.

1Throughout the paper we use subscript indexes to denote the class of the
flow and superscript indexes to denote destination servers.
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ii. J(t) represents the class of the incoming flow;
iii. I(t) is the destination server for the incoming flow.

Action set. The admission of an incoming flow for processing at
a certain server is represented by action A(S(t)) ∈ A (S(t)) ⊂
{0, 1}. Here A(S(t)) = 0 signifies reject and A(S(t)) = 1
denotes accept. If i is the destination server and Y i(t) = ψi,
then A(S(t)) = {0}, as server i has no available capacity to
host additional flows.

Probability kernel. Policy π : S → A associates to state S(t) a
probability distribution over action set A(S(t)). Let p(s′|s, a)
= P (S(t+ 1) = s′|S(t) = s,A(t) = a) denote the transition
probabilities

p(s′|s, a) = p((x′, j′, i′)|(x, j, i), a)

= αi
′

j′ p(x
′i
j |xij + a)

M∏
k,m=1

(k,m) ̸=(i,j)

p(x′
k
m|xkm) (1)

where p(x′km|xkm) = P
(
Xk
m(t+ 1) = x′

k
m|Xk

m(t) = xkm

)
.

Let denote p̂(u;xij) the probability of the event that u flows of
class j being routed to server i leave in between two arrivals,
given that xij flows are active on server i: it holds

p̂(u;xij) = Z

∫ ∞

0

(
xij
u

)
e−µjt(x

i
j−u)(1− e−µjt)ue−Ztdt

for 0 ≤ u ≤ xij and it is zero otherwise. Hence, the state
transition probabilities at server i are derived as

p(x′
i
j |xij , a) = p̂(xij − x′

i
j + aij ;x

i
j) (2)

with aij = a if and only if I(t) = i, J(t) = j and aij = 0

otherwise. Clearly this probability is nonzero only when x′ij ≤
xij + aij .

Rewards. Let Rt+1 be the reward attained after the action at
time t, following the traditional notation in [33]. In particular,
r(s, a) = E[Rt+1|S(t) = s,A(t) = a]. By admitting a flow of
class j to server i, the instantaneous reward for applications
binding to the tagged flow is expressed as

r(s, a) = a ·
∑
d∈Di

rd(x)χj(d) (3)

where rd(·) is the marginal gain attained by binding a new flow
to application d. Later, we define wj,d as the total amount of
flows of class j currently being processed by application d in
the system, and ϕd as the set of servers on which application
d has been installed. Specifically, wj,d =

∑
i∈ϕd

xij . The
immediate reward considered will only depend on this quantity:
rd(x) = rd(wj,d). Additionally, we assume that the immediate
reward for application d is a non-increasing function of wj,d.
Finally, we define wj = (x1j , . . . , x

M
j ) as the vector describing

the number of flows of class j active across all servers.

Policy. The admission policy π is stationary, i.e., a probability
distribution over the state-action space set π : S → A. In
the unconstrained setting, the objective function to maximize
for the admission control problem is the expected discounted
reward Gt :=

∑∞
t=0 γ

kRt+1+k starting from initial state s0.
We define the value function

vπ(s) = Eπ

[ ∞∑
t=0

γtr (S(t), π(S(t))) |S(0) = s

]

For every stationary deterministic policy, the resulting
Markov chain is regular, meaning it has no transient states
and a single recurrent non-cyclic class [8]. Next, we introduce
the CMDP formulation to account for the physical constraints
of the system considered, particularly the constraint on access
capacity.

III. THE CMDP MODEL

In CMDP theory [2], the discounted reward is taken w.r.t.
the initial state distribution β : S → ∆ :

Jπ(β) = E
s∼β

[vπ(s)] (4)

The access network to server i has capacity θi. Thus, the ag-
gregated long-term throughput demanded by the admitted flows
should not exceed such value. We define ci : S × A → R the
instantaneous cost related to the access bandwidth constraint:

ci(s, a) = a · ĉi(yi) (5)

where ĉi is an increasing function of yi.
The vector Kπ(β) = (K1

π(β), . . . ,K
M
π (β)) represents the

discounted cumulative constraint, where

Ki
π(β) = Eπ,s∼β

[ ∞∑
t=0

γtci
(
Xi(t), π(S(t))

)
|S(0) = s

]
(6)

For a fixed access capacity vector θ = (θ1, . . . , θM ), and a
feasible initial state distribution β, we seek an optimal policy
solving the edge flow admission control (EFAC) problem

maximize:
π∈Π

Jπ(β) (EFAC)

subj. to: Kπ(β) ≤ θ (7)

We denote as J∗(β) the corresponding optimal value.
The following structural result will be the basis of the SRL

algorithm presented in the next section. The proof is provided
in the technical report [10].

Theorem 1. If the EFAC problem is feasible, then
i. There exists an optimal stationary policy π which is random-
ized in at most M states;
ii. Such policy is a deterministic stationary policy if the con-
straint is not active;
iii. When at least one constraint is active, within the optimal
stationary policy outlined in i., each state where the optimal
policy is randomized corresponds to a distinct destination
server.

From the computational standpoint, an optimal solution of
EFAC can be determined by solving a suitable dual linear
program CMDP [3], which depends explicitly on the initial
distribution β.

The learning approach utilized in the following section
is grounded in the lagrangian formulation, which simplifies
problem EFAC to a non-constrained inf-sup problem [2].

inf
λ≥0

sup
π
L(λ, π) = inf

λ≥0
sup
π

[J(π, β)− λ (K(π, β)− θ)] (8)

Hence, the penalized Q-function for a given policy becomes

Qλπ(s, a) = Eπ

[ ∞∑
t=0

γtrλ(S(t), A(t)) | S(0) = s,A(0) = a

]
where, for a fixed multiplier λ, rλ(s, a) = r(s, a) − λc(s, a)
is the penalized reward. The penalized value function writes
vλπ(s) = Qλπ(s, π(s)).
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Remark. We note that (6) can be considered also in the form
of an average constraint [36], [1]. To this respect, it is worth
observing that our solution works also for the average reward
form of EFAC. However, for the sake of comparison with state
of the art methods, the discounted form is the most popular
formulation in safe reinforcement learning [36].

IV. LEARNING THE OPTIMAL ADMISSION POLICY

Algorithm 1 Decomposed Reward Constrained Policy Opti-
mization

1: Initialize λ(0), initial policy π(0)
2: for k = 0, 1, . . . do
3: Initialize S(0) =

(
xi(0), j(0), i(0)

)
∼ β

4: for t = 0, . . . , T do
5: A(t) ∼ π(k)(S(t))
6: S(t+ 1), R(t+ 1) ∼ actor(S(t), A(t))
7: Critic update for each component according to [39]
8: Actor update: ϵ-greedy policy
9: end for

10: λ update according to (10) and (11)
11: end for

In situations where transition probabilities (2) are unknown,
we can resort to RL algorithms to determine an optimal policy
for EFAC. We design a model-free safe reinforcement learning
(SRL) algorithm to account for both the instantaneous reward
(3) and cost (5). This section begins with a brief introduction
to reward decomposition in reinforcement learning, followed
by an explanation of the motivation for the chosen type of
safe reinforcement learning (Lagrangian relaxation). The next
paragraph describes the introduced algorithm, which is built on
these concepts. The section concludes with a brief discussion
of the algorithm’s convergence properties and a remark on its
adaptation to the multi-constraint setting studied.

Reward and cost decomposition. For the system at hand,
the full state space S has cardinality Ω(Mψ+2) where ψ =
max{ψi}. A direct tabular RL approach is not viable, as typical
in resources allocation problems [23]. Reward decomposition
has been introduced in [28] to decompose a RL agent into
multiple sub-agents, where their collective valuations determine
the global action. In previous works, the method has been
applied in the conventional unconstrained setting only, see
[34], [37], [16]. By breaking down the reward function into
components within the original setting, the policy improvement
step is simplified by considering a separable state-action value
function [16]. To best of the author’s knowledge, the algorithm
proposed is the first one to consider the idea of reward and cost
decomposition in the context of safe reinforcement learning.

Lagrangian relaxation methods for safe reinforcement
learning. Our method is rooted in the template SRL actor-critic
algorithm for the single constraint case proposed by Borkar
in 2005 [5]. This algorithm prescribes a primal-dual learning
procedure to solve the CMDP linear program [2] using a three-
timescale framework. The two fast timescales learn the optimal
policy using an actor-critic approach for a fixed Lagrange
multiplier λ. The optimal value of λ is determined via gradient
ascent performed at the slowest timescale.

Compared to other methods like interior point methods [20]
or trust-region methods [1], this approach considers an estimate

of the penalized Q-function, along with the usual Q-learning
update rule, which more naturally handles the decomposition
operation of both the reward and cost functions.

Decomposed Reward Constrained Policy Optimization. This
paragraph describes the RL algorithm derived from Line 11
by incorporating the decomposed actor-critic component and
the Lagrange multiplier update. This algorithm is referred
to as Decomposed Reward Constrained Policy Optimization
(DRCPO).

In our scenario, a natural option is to identify a component
for each pair (i, d) representing a destination edge server i and
an application d installed therein. Moreover, fixed component
(i, d), we can observe how a reduced representation of the state,
s̃ = (wk,d, y

i, k,m), is sufficient to compute the immediate
penalized reward for each component. This observation can
be useful in reducing the amount of estimates to compute for
each component, as it aggregates several different states of the
system. For each of the

∑
i d
i components, we will consider a

reduced state space of cardinality Ω(Mψ2).
In general, given an arrival of class k routed to server

m, if the flow is admitted, the reward is non-zero only for
the components (m, d), where the application d interested in
information flows of class k (χk(d) = 1). This is given by

ri,λd (s, a) := rd(wk,d, a)− λici(yi, a) (9)

with rd(·, a) and ci(·, a) having the properties described in (3)
and (5), respectively. For all other components the penalized
reward is null.
Finally, we can define, for each component, the corresponding
Q-function, following the usual definition:

Qi,λd (s, a) = E
π

[ ∞∑
t=0

γtri,λd (S(t), A(t))|S(0) = s,A(0) = a

]

In the resulting actor-critic scheme, the critic will feature the
aggregated Q-function, with updates being performed for all
components Qid at each step, using the traditional learning rule
of Q-learning [39].

Regarding the action selection, we observe that, due to the
reduced size of the action space, the actor can utilise a simple
ϵ-greedy exploration strategy [35]. In doing so, convergence
to the optimal solution still occurs, but in the set of ϵ-greedy
policies: the resulting policy may be sub-optimal, in sight of
Theorem 1. Conversely, this approach greatly simplifies the
exploration process by considering just deterministic policies,
while significantly reduces the policy search space. As seen in
the numerical experiments in Sec. VI, for large values of M ,
the loss in performance becomes negligible. Also, alternative,
policy gradient methods which can handle more complex action
spaces are possible, but are left as future work.

Finally, the Lagrange multiplier update [5] is the gradient
descent step

λk+1 = λk − ηt∇λL(λ, πτ ) (10)

for suitable values of the learning rate ηt (line 10), where

∇λL(λ, π) = − (Es [K(π, β)]− α) (11)
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Line 11 outlines the structure of the proposed scheme for the
episodic form2.

Convergence of DRCPO. In this paragraph, for the sake of
readability, we will omit the symbol λ used to denote the
Lagrange multiplier. In [16] the following results regarding the
components of the Q-function obtained following the decom-
position approach have been proved:

Proposition 1. Denote Qid(s, a)(t) the update of the (i, d)-th
component after t learning update. Under the usual conditions
for the convergence of Q-learning [39], Qid(s, a)(t) converges
almost surely to the optimal component Qi,∗d (s, a), for every
component (d, i) and for every pair s, a. Moreover, it holds

Q(s, a)(t) =

M∑
i=1

∑
d∈Di

Qid (s, a) (t)

converges a.s. to the optimal Q-function Q∗(s, a) so that

Q∗(s, a) =

M∑
i=1

∑
d∈Di

Qi,∗d (s, a)

for every pair (s, a).

The convergence of DRCPO to the optimal solution is
guaranteed, as stated in the following

Proposition 2. Under standard assumptions on learning rate
of stochastic approximation, DRCPO converges to an optimal
solution of EFAC w.p.1.

Proof. The proof is provided in the technical report [10].

Actually, the template described in Line 11 provides some
flexibility in the implementation of DRCPO. For scenarios
where the system involves large values of ψi, for instance,
the critic component can be replaced by a neural network to
estimate the value function component-wise. Of course, at the
cost of losing the guarantees of convergence to an optimal
policy.
Remark. Remarkably, the literature on SRL does not provide
efficient methods to solve EFAC under multiple constraints [21].
However, Theorem 1 shows that, while M has coupled rewards,
constraints are actually independent. This, in combination with
the reward decomposition described in the previous section, let
us perform the parallel of multiple single-constraint learning
updates. It’s worth noting that this reduction permits to optimize
the lagrangian vector component-wise in a single timescale.

V. LOAD BALANCING

Up to this point, we have solved EFAC while assuming a
given static routing control {uij}. We now seek to optimize the
routing control for the sake of load balancing. The objective
is hence to maximize the reward of the system w.r.t. to joint
admission control and routing:

Ju(β) = Es∼β [vu(s)] (12)

where vu(s) is the value function of the load balancing policy,
defined as

vu(s) := Eπ

[ ∞∑
t=0

γtr ((X(t), J(t), u(J(t))), A(t)) | S(0) = s

]
(13)

2The average reward formulation can be derived as described in [33]

and u(J(t)) represents the server towards which the incoming
flow of class J(t) arriving at time t has been routed to.

However, the analysis of the full Markov system, i.e., the
SMDP where the action space encompasses both routing and
admission appears extremely challenging, because the actions
taken at each state are mutually dependent. Its analysis goes
beyond the scope of the current work.

The optimization algorithm we propose alternates between
two steps: the first one computes the new admission control
policy given a fixed load balancing policy, according to the
results of Sec. IV. The second step optimizes the load balancing
policy for a given admission policy with the following update
step

uij(t+ 1) = Π
[
uij(t) + α(t)ĝij(t)

]
(14)

where α is a standard step-size sequence and Π[a] =
max(0,min(a, 1)) is a projection into [0, 1]. The gradient of
the total return, denoted as ĝ, is approximated in the symmetric
unbiased form, according to the SPSA algorithm [11]

ĝij(t) =
R̂π̃

(
uij(t) + c(t)∆i

j(t)
)
− R̂π̃

(
uij(t) + c(t)∆i

j(t)
)

2c(t)∆i
j(t)

where c is the term of a standard stepsize sequence. {∆} is
a vector part of a sequence of perturbations of i.i.d. com-
ponents {∆i

j , i = 1, . . . ,M, j = 1, . . . ,M} with zero mean
and where E

[
|(∆i

j(t))
−2|

]
is uniformly bounded. Since we

cannot ensure appropriate conditions on the objective function,
namely unimodality or convexity, sequence (14) is guaranteed
to converge w.p.1 to a local maximum [11], thanks to some
weaker regularity properties proved in the technical report [10].

The iterative procedure can continue until the convergence
condition with respect to routing probabilities {uij} is attained
. This procedure does not necessarily converge to the optimal
value of the objective function (12), however, in the numerical
section we have compared its performances to some heuristic
methods and have observed its superiority. Details about the
heuristic policies and the pseudocode of the adaptive method
can be found in the technical report [10].

VI. NUMERICAL RESULTS

Numerical experiments are divided into three main groups.
The first reported one compares the performance of our

learning algorithm against the state-of-the-art general-purpose
algorithm, namely RCPO [36]. RCPO follows the same tem-
plate outlined in Line 11: it uses two Neural Networks (NNs)
to approximate both the value function (critic) and the policy
(actor). In Deep Reinforcement Learning (DRL), NNs act as
an interpolator, greatly reducing the number of represented
states [23]. RCPO has been implemented to incorporate the
full system state S(t) = (X(t), J(t), I(t)) as input for the
neural networks. In the second experiment, we investigate how
the reward varies as the number of applications installed per
server increases. The last experiment performs a comparative
analysis of the load balancing policies proposed in Sec. V. The
system parameters for all experiments were randomly sampled
from predefined sets: they are provided in the technical report
[10]. Each column in the table represents the sets considered to
generate the corresponding data. The code is available in [9].

Learning the optimal admission policy.The results depicted
in Figure 2 illustrate a comparison of the performance among
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Figure 2: Learning dynamics for the a) discounted reward and b)
discounted cost function.

various admission control algorithms. The load balancing policy
is uniform. Without loss of generality, the system hosts only one
application per flow class, potentially installed across multiple
servers. In this first test, the scenario features 10 applications
per server, ensuring precisely one application per flow class on
each server. The experiments encompassed a total of 20, 000
episodes, with policy evaluations conducted every 100 episodes.
Due to the heterogeneity of the tested system environments, the
reward of each sample is normalized w.r.t. to the unconstrained
optimal reward, while the cost is normalized w.r.t. the value
of the constraint. The performance of DRCPO is compared
with RCPO and also with a naive baseline policy. The baseline
policy admits flows only when the server’s total occupation is
below a specific fixed threshold. The threshold value has been
optimized to ensure feasibility while maximizing the reward.

The findings from Figure 2 demonstrate that in the conducted
experiments, DRCPO consistently outperforms RCPO in terms
of the reward, while also demonstrating better compliance to
access bandwidth constraints. Specifically, the results reveal that
DRCPO achieves convergence to the optimal solution in fewer
than 104 episodes on average, whereas RCPO requires about
twice the number of episodes.
Furthermore, when comparing the two SRL approaches with the
previously described naive baseline, it becomes apparent that
the solution provided by DRCPO yields a reward approximately
15% higher, while the performance of RCPO are comparable to
those of the naive policy based on the server’s total occupation.

Impact of Application Installation. We conduct 20 distinct
experiments and analyze a system consisting of 10 servers,
flows classes, and applications. We observe the trend followed
by the optimal discounted reward as the number k of servers
hosting each application increases. It’s worth noting that in each
experiment, exactly k applications are installed on each server,
and each application is installed on exactly k servers.

Although the experiments span all possible values of di,
Figures 3 and 4 specifically highlight the results for di ∈
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Figure 3: Optimal reward distribution at the increase of the number of
applications per server.
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Figure 4: The joint reward and Learning dynamics for various values
of di; in (a), (b), (c), (d), and (e) the discounted cost dynamics. Dashed
line: median. Upper and lower borders of the shaded regions: server
with highest and lowest associated cost, respectively.

{1, 4, 7, 10}. To facilitate comparison, the same color is main-
tained for each value throughout the figures in the section.
Notably, the linestyle chosen for the case with di = 10 in
Figures 3 and 4 matches the line corresponding to DRCPO
in Figure 2, as they represent the same data. Again, in order
to compare different results, the values appearing in Figure 3
are normalized with respect to the optimal discounted reward
which is obtained, in each experiment, assuming applications
are installed on just one server. The plot displays median
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data values, and a box plot represents the data distribution.
Furthermore, a quadratic regression line illustrates the overall
trend of the median data. The highest value obtained in each
experiment and for each number of applications per server is
recorded, ensuring that at least 50% of constraints are respected
and any additional violations remain below 5%. This criterion
accommodates the tendency of discounted costs to closely
approach constraints while occasionally surpassing them.

From Figure 3, we first observe that installing edge appli-
cations on all servers appears to be the configuration with
best performance across most of the examined experiments. In
particular, with just one application per server (di = 1,∀ i),
certain servers end up receiving a disproportionately large
volume of flows. This is the case when they host applications
interested in flows classes with very high arrival rates (or very
low departure rates). As a result, feasibility constraints on the
access bandwidth require them to admit only a small fraction
of flows. On the other hand, as the number of applications
per server increases, load balancing attenuates the presence of
such hot-spots. The increase of the long term reward eventually
levels off: it reaches a plateau towards the highest possible
value, as it shows the black regression line which depicts the
trend of the median rewards. In these experiments the mean
increase in reward is around 20% passing from di = 1 to
di = 10.

Finally, Figure 4 provides further insight into the learning
dynamics for reward and cost, respectively, for different number
of applications per server. The top plot reports on the learning
dynamics for the discounted reward, averaged and normalized
across all the experiments: it is clear that for higher values
of di the discounted reward is higher and the convergence
to an optimal solution is faster. The subsequent plots in Fig-
ure 4b/c/d/e represent the learning dynamics of the cost function
as the number of applications per server increases, namely for
di ∈ {1, 4, 7, 10}, respectively. In these plots, the upper (lower)
boundary of the colored area denotes the dynamics of the cost
of the server with highest (lowest) associated cost, which may
change as the number of episodes increase. The line in the
middle denotes the average cost across all the servers. It is
apparent that the difference between the highest cost and the
lowest is substantially higher in the case with di = 1, for
the same reason previously described. On the contrary, this
difference decreases at the increase of di. In the extreme case
di = 10 all servers consistently maintain costs proximal to
their respective constraints. A higher number of applications per
server apparently grants more efficient utilization of available
resources, and consequently it increases the discounted rewards
across most of the sample data.
Another reason behind the poor performances in the case
with lower values of di is that, as previously mentioned, the
implementation of DRCPO presented here exclusively adopts
deterministic policies for practical reasons, while, as indicated
in Theorem 1, the optimal policy is stochastic in one state per
destination server. The deterministic nature of the sought policy
has a particularly adverse effect on the performance of DRCPO,
especially for lower values of di, as observed in Figure 4. This
is likely because the state with the optimal stochastic policy is
more frequently visited in these cases.
Developing an SRL algorithm that incorporates stochastic poli-
cies to address this specific issue, which is notably problematic

only in scenarios with low values of di, would have been more
challenging, slower, and ultimately of limited practical utility
for more realistic scenarios involving multiple applications per
server. The search for an efficient method to derive a policy
that is stochastic in a single state is left for future work.

Comparing different load balancing policies. The last set
of numerical experiments of Figure 5 compares different load
balancing policies in a scenario where each server may have
different parameters. These experiments examine an increasing
number of servers, i.e., M ∈ {3, 5, 7, 10}. Once the arrival rates
ζj from class j are defined, the flow arrival rate per class to a
designated server is determined based on the routing policy.

For ease of comparison, the values on the y-axis of Figure 5
are normalized relative to the naive load balancing, which routes
flows to all servers uniformly at random, regardless of whether
they host applications interested in such flows. Consequently,
all displayed values exceed unity.

Figure 5a illustrates the normalized reward per server con-
cerning the increasing average ratio between servers’ capacity
ψi and access capacity θi. Notably, for lower values of the
ratio ψ/θ, the occupation-based load balancing policy exhibits
the best performance. In this scenario, the reward shows a non-
increasing trend concerning a server’s occupation: with low ψ/θ
values, the optimal admission policy tends to admit flows more
frequently. Consequently, the occupation-based load balancing
policy prioritizes routing flows to underloaded servers, attaining
the highest cumulative reward. However, as the ratio per server
ψ/θ increases, the performance gap in favour of the adaptive
load balancing widens. Finally, both the uniform and origin-
based policies yield comparable results across the experiments.

Figure 5b depicts the normalized reward as the number
of servers increases. Once again, the adaptive load balancing
consistently outperforms all other methods. Furthermore, as
the value of M increases, the advantage over the naive load
balancing widens.

In these experiments, applications installed on each server
are interested, on average, in half of the possible flow classes.
Consequently, with increasing M , the naive uniform load bal-
ancing becomes increasingly inefficient, leading to a significant
fraction of flows being discarded. However, it’s worth noting
that while the adaptive load balancing demonstrates clearly
superior performance, this comes at the cost of a larger number
of policy evaluation steps.

VII. CONCLUSIONS

Pushed by the surge of edge analytics, the integration of flows
from diverse classes poses a significant challenge to existing
edge computing architectures. In response, we have introduced
a decomposed, constrained Markovian framework for the de-
centralized admission control of varied information flows. The
objective is maximizing the utility of edge applications while
accounting for constraints on access network bandwidth and
compute capacity. Within this framework, we adopt safe rein-
forcement learning as the solution concept to derive an optimal
policy, even in presence of unknown and highly heterogeneous
system parameters. Leveraging the structure of the underlying
Markovian model, our proposed solution outperforms state-of-
the-art approximated deep reinforcement learning approaches,
reducing significantly the number of required learning episodes
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Figure 5: Performance of different load balancing policies; values on
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for convergence. Moreover, our novel reward decomposition
method, DRCPO, attains an optimal admission policy.

This work marks an initial step in the field of admission
control for edge analytics, opening several directions for future
investigation. A particularly challenging one involves develop-
ing a comprehensive Markovian model for joint admission con-
trol and routing. Furthermore, addressing network constraints
beyond edge access capacity requires considering also the core
network topology and the requirements of application modules
deployed beyond edge servers. Additionally, one could intro-
duce specific application performance metrics into the model.
This would permit to obtain specialized admission policies
for flow analytic tasks such as video analytics or anomaly
detection. In this regard, model extensions to incorporate per-
flow information content are left as part of future work.
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